We developed a calcium phosphate (CaP)-assembled polymer nanocarrier for intracellular doxorubicin (DOX) delivery based on a mussel-inspired mineralization approach. A DOX-loaded core-shell polymer nanoparticle (DOX-NP) consisting of a poly(3,4-dihydroxy-l-phenylalanine) (PDOPA) core and a poly (ethylene glycol) (PEG) shell was utilized as a nanotemplate for CaP mineralization. The mean hydrodynamic diameter of the DOX-loaded CaP-mineralized polymer nanoparticles (DOX-CaP-NPs) was 154.3nm. Energy-dispersive X-ray spectroscopy confirmed that the DOX-CaP-NPs contained substantial amounts of Ca and P, elements found only in the CaP mineral. The loading efficiency and content of DOX, estimated by fluorescence spectroscopy, were 54.0% and 10.8wt%, respectively. The CaP deposited in the PDOPA core domain enabled the DOX-CaP-NPs to maintain a robust structure and effectively inhibit DOX release at extracellular pH, whereas at endosomal pH, the CaP core dissolved to trigger a facilitated DOX release. The DOX-CaP-NPs may serve as robust nanocarriers with a high delivery efficacy for cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2017.05.077 | DOI Listing |
J Control Release
January 2022
Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea. Electronic address:
Colloids Surf B Biointerfaces
September 2017
Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea. Electronic address:
We developed a calcium phosphate (CaP)-assembled polymer nanocarrier for intracellular doxorubicin (DOX) delivery based on a mussel-inspired mineralization approach. A DOX-loaded core-shell polymer nanoparticle (DOX-NP) consisting of a poly(3,4-dihydroxy-l-phenylalanine) (PDOPA) core and a poly (ethylene glycol) (PEG) shell was utilized as a nanotemplate for CaP mineralization. The mean hydrodynamic diameter of the DOX-loaded CaP-mineralized polymer nanoparticles (DOX-CaP-NPs) was 154.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!