Neurodegenerative brain changes can affect the functional connectivity strength between nodes of the default-mode network (DMN), which may underlie changes in cognitive performance. It remains unclear how the functional connectivity strength of DMN nodes differs from healthy to pathological aging and whether these changes are cognitively relevant. We used resting-state functional magnetic resonance imaging to investigate the functional connectivity strength across five DMN nodes in 25 healthy controls (HC), 28 subjective cognitive decline (SCD) participants, and 25 prodromal Alzheimer's disease (AD) patients. After identifying the ventral medial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), retrosplenial cortex (RSC), inferior parietal lobule, and the hippocampus we investigated the functional strength between DMN nodes using temporal network modeling. Functional coupling of the vmPFC and PCC in prodromal AD patients was disrupted. This vmPFC-PCC coupling correlated positively with memory performance in prodromal AD. Furthermore, the hippocampus de-coupled from posterior DMN nodes in SCD and prodromal AD patients. There was no coupling between the hippocampus and the anterior DMN. Additional mediation analyses indicated that the RSC enables communication between the hippocampus and DMN regions in HC but none of the other two groups. These results suggest an anterior-posterior disconnection and a hippocampal de-coupling from posterior DMN nodes with disease progression. Hippocampal de-coupling already occurring in SCD may provide valuable information for the development of a functional biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-161120DOI Listing

Publication Analysis

Top Keywords

dmn nodes
20
functional connectivity
12
connectivity strength
12
strength dmn
12
functional
8
prodromal alzheimer's
8
alzheimer's disease
8
dmn
8
prodromal patients
8
posterior dmn
8

Similar Publications

Multilayer network instability underlying persistent auditory verbal hallucinations in schizophrenia.

Psychiatry Res

December 2024

Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China. Electronic address:

Background: Auditory verbal hallucinations (AVHs) in schizophrenia (SCZ) are linked to brain network abnormalities. Resting-state fMRI studies often assume stable networks during scans, yet dynamic changes related to AVHs are not well understood.

Methods: We analyzed resting-state fMRI data from 60 SCZ patients with persistent AVHs (p-AVHs), 39 SCZ patients without AVHs (n-AVHs), and 59 healthy controls (HCs), matched for demographics.

View Article and Find Full Text PDF

Resting-state functional connectivity analyses have been used to examine synchrony in neural networks in substance use disorders (SUDs), with the default mode network (DMN) one of the most studied. Prior research has generally found less DMN synchrony during use and greater synchrony during cessation, although little research has utilized this method with opioid use. This study examined resting brain activity in treatment-seeking persons who use opioids at two points-when using opioids and when opioid-free-to determine whether the DMN exhibits different levels of connectivity during opioid use and cessation and whether differences in connectivity predict subsequent relapse.

View Article and Find Full Text PDF

Background: The outcome of major surgery is determined not only by the success of the procedure itself but also by its neurocognitive effects. We previously reported improved cognition following spine surgery (Müller et al. 2023 Spine), but the mechanisms underlying these changes remain unknown.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is considered one of the most common neurodegenerative disorders in the elderly; however, how it contributes to cognitive decline is poorly understood. With resting-state functional magnetic resonance imaging from 66 individuals with ARHL and 54 healthy controls, group spatial independent component analyses, sliding window analyses, graph-theory methods, multilayer networks, and correlation analyses were used to identify ARHL-induced disturbances in static and dynamic functional network connectivity (sFNC/dFNC), alterations in global network switching and their links to cognitive performances. ARHL was associated with decreased sFNC/dFNC within the default mode network (DMN) and increased sFNC/dFNC between the DMN and central executive, salience (SN), and visual networks.

View Article and Find Full Text PDF

Therapeutic DBS for OCD Suppresses the Default Mode Network.

Hum Brain Mapp

December 2024

Weill Institute for Neurosciences, University of California, San Francisco, California, USA.

Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) is a circuit-based treatment for severe, refractory obsessive-compulsive disorder (OCD). The therapeutic effects of DBS are hypothesized to be mediated by direct modulation of a distributed cortico-striato-thalmo-cortical network underlying OCD symptoms. However, the exact underlying mechanism by which DBS exerts its therapeutic effects still remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!