Background: Small rodent models are routinely used to evaluate the safety and efficacy of blood transfusions. Limited comprehensive literature exists about effect of different storage solutions in rat red blood cells (RBCs) characteristics. RBCs undergo time dependent biochemical and biophysical changes during storage known as hypothermic storage lesions (HSLs).
Objective: This study evaluates the effects of RBC additive solutions (AS) during storage of rat RBCs.
Methods: Blood was leukoreduced and stored as per manufacturer instructions at 4°C up to 42-days. Three solutions, CPDA-1; AS-1; and AS-7 (SOLX), were evaluated. Biochemical parameters measured included extracellular K+, pH, hemolysis, 2,3-diphosphoglycerate (2,3-DPG), oxygen affinity, ATP, and lactate. Mechanical properties measured included RBC deformability, elongation index (EI), RBC membrane shear elastic modulus (SEM), mean corpuscular volume (MCV), viscosity, and aggregability.
Results: There were no differences in biochemical or mechanical parameters at baseline or after one week of storage. However, after two weeks, AS-7 preserved biochemical and mechanical properties as compared to CPDA-1 and AS-1. Changes were observed to be significant after 14-days of storage. AS-7 prevented extracellular K+ increase, reduced acidosis, showed lower hemolysis, preserved ATP and 2,3-DPG levels (consequently oxygen affinity), and reduced lactate. AS-7, when compared to CPDA-1 and AS-1, prevented the reduction in RBC deformability and was found to preserve the EI at multiple shear stresses, the membrane SEM, the aggregability and viscosity.
Discussion: Rat RBCs stored with AS-7 presented reduced changes in biochemical and mechanical parameters, when compared with rat RBCs stored in CPDA-1 and AS-1, after as early as two weeks of storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402878 | PMC |
http://dx.doi.org/10.3233/CH-170248 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!