Efficiently assessing and managing the risks of pollution in the marine environment requires mechanistic models for toxic effects. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models for the end point survival. Two recurring questions in the application of GUTS concern the most appropriate death mechanism, and whether the total body residue is a proper dose metric for toxic effects. We address these questions with a case study for dimethylnaphthalene in the marine copepod Calanus finmarchicus. A detailed analysis revealed that body residues were best explained by representing copepods with two toxicokinetic compartments: separating structural biomass and lipid storage. Toxicity is most likely related to the concentration in structure, which led to identification of "stochastic death" as the most appropriate death mechanism. Interestingly, the parametrized model predicts that lipid content will have only minor influence on short-term toxicity. However, the toxicants stored in lipids may have more substantial impacts in situations not included in our experiments (e.g., during diapause and gonad maturation), and for contaminant transfer to eggs and copepod predators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02212DOI Listing

Publication Analysis

Top Keywords

lipid storage
8
marine copepod
8
toxic effects
8
appropriate death
8
death mechanism
8
dynamic links
4
links lipid
4
storage toxicokinetics
4
toxicokinetics mortality
4
mortality marine
4

Similar Publications

This study is the first to explore the effects of the novel yellow pigment monascinol (Msol) from red mold rice (RMR) on reducing body fat and to compare its effects with those of monascin (MS) and ankaflavin (AK). In a high-fat diet-induced rat model, different doses of RMR fermented rice (RL, RM, RH) and purified Msol, MS, and AK were administered over an 8-week period. The results showed that all treatment groups significantly reduced body weight and fat mass.

View Article and Find Full Text PDF

Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

Coacervate vesicles assembled by liquid-liquid phase separation improve delivery of biopharmaceuticals.

Nat Chem

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.

View Article and Find Full Text PDF

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!