Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and Engineering, and §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Published: September 2017

Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b00774DOI Listing

Publication Analysis

Top Keywords

self-assembly sub-10
8
laser annealing
8
laser spike
8
annealing
5
ultrafast self-assembly
4
sub-10 block
4
block copolymer
4
copolymer nanostructures
4
nanostructures solvent-free
4
solvent-free high-temperature
4

Similar Publications

The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.

View Article and Find Full Text PDF

Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.

View Article and Find Full Text PDF

Liquid Crystal Promoted Self-Assembly of Statistical Copolymers into Diverse Nanostructures with Precise Dimensions.

J Am Chem Soc

November 2024

Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.

In both natural and synthetic systems, the segregation of multicomponent entities is vital for regulating functions and the ultimate usage of materials. To accomplish the desired properties via nanosegregation or microphase separation, great effort is usually demanded in the synthesis. For example, microphase-separated block copolymers rely on the delicate controlled/living polymerization of different monomers in sequence.

View Article and Find Full Text PDF

This work pioneers to combine fast self-assembly of polyhedral oligomeric silsesquioxanes (POSS) nanocage-based giant surfactants with high etching contrast and directed self-assembly for reliable long-range lateral order to create well-aligned sub-10 nm line nanopatterns via reactive ion etching (RIE). Polystyrene-block-oligo(dimethylsiloxane) substituted POSS (PS-b-oDMSPOSS) with seven oligo(dimethylsiloxane) at the corners of the POSS nanocage and one polystyrene (PS) tail is designed and synthesized as a giant surfactant with self-assembly behaviors like block copolymer (BCP). In contrast to BCP, oDMSPOSS gives a volume-persistent "nanoatom" particle with higher mobility for fast self-assembly and higher segregation strength with PS for smaller feature size.

View Article and Find Full Text PDF

Although extreme ultraviolet lithography (EUVL) has emerged as a leading technology for achieving high quality sub-10 nm patterns, the insufficient pattern height of photoresist patterns remains a challenge. Directed self-assembly (DSA) of block copolymers (BCPs) is expected to be a complementary technology for EUVL due to its ability to form periodic nanostructures. However, for a combination with EUV patterns, it is essential to develop advanced BCP systems that are suited to inorganic-containing EUV photoresists and offer improved resolution limits, pattern quality, and etch resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!