A DNA-Programmed Liposome Fusion Cascade.

Angew Chem Int Ed Engl

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.

Published: October 2017

Chemically engineered and functionalized nanoscale compartments are used in bottom-up synthetic biology to construct compartmentalized chemical processes. Progressively more complex designs demand spatial and temporal control over entrapped species. Here, we address this demand with a DNA-encoded design for the successive fusion of multiple liposome populations. Three individual stages of fusion are induced by orthogonally hybridizing sets of membrane-anchored oligonucleotides. Each fusion event leads to efficient content mixing and transfer of the recognition unit for the subsequent stage. In contrast to fusion-protein-dependent eukaryotic vesicle processing, this artificial fusion cascade exploits the versatile encoding potential of DNA hybridization and is generally applicable to small and giant unilamellar vesicles. This platform could thus enable numerous applications in artificial cellular systems and liposome-based synthetic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201703243DOI Listing

Publication Analysis

Top Keywords

fusion cascade
8
fusion
5
dna-programmed liposome
4
liposome fusion
4
cascade chemically
4
chemically engineered
4
engineered functionalized
4
functionalized nanoscale
4
nanoscale compartments
4
compartments bottom-up
4

Similar Publications

One-Pot Transition-Metal-Free Synthesis of π-Extended Bipolar Polyaromatic Hydrocarbons.

Angew Chem Int Ed Engl

January 2025

Instytut Chemii Organicznej PAN: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.

The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Cascaded Feature Fusion Grasping Network for Real-Time Robotic Systems.

Sensors (Basel)

December 2024

College of Engineering, Huaqiao University, Quanzhou 362021, China.

Grasping objects of irregular shapes and various sizes remains a key challenge in the field of robotic grasping. This paper proposes a novel RGB-D data-based grasping pose prediction network, termed Cascaded Feature Fusion Grasping Network (CFFGN), designed for high-efficiency, lightweight, and rapid grasping pose estimation. The network employs innovative structural designs, including depth-wise separable convolutions to reduce parameters and enhance computational efficiency; convolutional block attention modules to augment the model's ability to focus on key features; multi-scale dilated convolution to expand the receptive field and capture multi-scale information; and bidirectional feature pyramid modules to achieve effective fusion and information flow of features at different levels.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new key genes in ischemic stroke.

Gene

January 2025

Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Neurology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China; Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China. Electronic address:

Background: Ischemic stroke (IS) is an important disease causing death and disability worldwide, and further investigation of IS-related genes through genome-wide association study (GWAS) data is valuable.

Methods: The study included GWAS data from 62,100 IS patients of European origin and 1,234,808 controls in a cross-tissue transcriptome association study (TWAS). A joint analysis was first performed by the Unified Test for Molecular Markers (UTMOST) and FUSION methods.

View Article and Find Full Text PDF

Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.

Biomaterials

December 2024

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!