Metasurface serves as a promising plasmonic sensing platform for engineering the enhanced light-matter interactions. Here, a hyperbolic metasurface with the nanogroove structure in the subwavelength scale is designed. This metasurface is able to modify the wavefront and wavelength of surface plasmon wave with the variation of the nanogroove width or periodicity. At the specific optical frequency, surface plasmon polaritons are tightly confined and propagated with a diffraction-free feature due to the epsilon-near-zero effect. Most importantly, the groove hyperbolic metasurface can enhance the plasmonic sensing with an ultrahigh phase sensitivity of 30 373 deg RIU and Goos-Hänchen shift sensitivity of 10.134 mm RIU . The detection resolution for refractive index change of glycerol solution is achieved as 10 RIU based on the phase measurement. The detection limit of bovine serum albumin (BSA) molecule is measured as low as 0.1 × 10 m (1 × 10 mol L ), which corresponds to a submolecular detection level (0.13 BSA mm ). As for low-weight biotin molecule, the detection limit is estimated below 1 × 10 m (1 × 10 mol L , 1300 biotin mm ). This enhanced plasmonic sensing performance is two orders of magnitude higher than those with current state-of-art plasmonic metamaterials and metasurfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201700600 | DOI Listing |
Biosensors (Basel)
December 2024
LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.
Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.
View Article and Find Full Text PDFChemistryOpen
December 2024
Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
The growing demand for detection and sensing in the biomedical field is placing higher demands on technology. In clinical testing, it is expected to be able to realize both rapid large-field imaging and analysis of single particles (or single molecules or single cells), and it is expected to be able to grasp both the unique individuality of single particles in time and space during the complex reaction process, as well as the regular correlation between single particles in the same population distribution. Supported and promoted by the theory of localized surface plasmon resonance (LSPR), dark-field microscopy, as a single-particle optical imaging technique with a very high signal-to-noise ratio, provides a powerful new means to address the above clinical detection needs.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!