Background: The aim of this study was to examine the possible antioxidant, anti-inflammatory, and antidiabetic effects of the aqueous extracts from three Glycine species. In HPLC analysis, the chromatograms of three Glycine species were established. Flavonoid-related compounds might be important bioactive compounds in Glycine species.
Results: The results showed that the aqueous extract of Glycine tabacina (AGTa) had the strongest antioxidant activity compared with the other Glycine species extracts. We also found that AGTa had higher contents of total polyphenol compounds and flavonoids than the other extracts. We also have investigated the anti-inflammatory effects of the three Glycine species using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) ex vivo. When RAW264.7 macrophages were treated with different concentrations of three Glycine species together with LPS, a significant concentration-dependent inhibition of NO production was detected. The aqueous extract of Glycine max (AGM) had the strongest anti-inflammatory activity in comparison with the other Glycine species extracts. Western blotting revealed that three Glycine species blocked protein expression of iNOS and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 macrophages, significantly. The antidiabetic activities of the three Glycine species were studied in vitro using α-glucosidase and aldose reductase (AR) inhibitory methods. AGTa had the highest inhibitory activities on α-glucosidase and aldose reductase, with IC of 188.1 and 126.42 μg/mL, respectively. The bioactive compounds, genistein and daidzein, had high inhibitory activities on antioxidant, anti-inflammatory, α-glucosidase and aldose reductase.
Conclusions: These results suggest that Glycine species might be a good resource for future development of antioxidant, anti-inflammatory and antidiabetic heath foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432927 | PMC |
http://dx.doi.org/10.1186/s40529-016-0153-7 | DOI Listing |
Heliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
Medicine (Baltimore)
November 2024
Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China.
Rationale: The MYOC gene is associated with juvenile open-angle glaucoma (JOAG). This study aims to provide genetic counseling for a Chinese JOAG family by detecting MYOC mutations to identify high-risk individuals for early JOAG intervention. It also supplements the clinical characteristics of glaucoma patients with MYOC gene mutations.
View Article and Find Full Text PDFEBioMedicine
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. Electronic address:
Background: Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!