Bayesian analysis of the piecewise diffusion decision model.

Behav Res Methods

Department of Psychology, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.

Published: April 2018

Most past research on sequential sampling models of decision-making have assumed a time homogeneous process (i.e., parameters such as drift rates and boundaries are constant and do not change during the deliberation process). This has largely been due to the theoretical difficulty in testing and fitting more complex models. In recent years, the development of simulation-based modeling approaches matched with Bayesian fitting methodologies has opened the possibility of developing more complex models such as those with time-varying properties. In the present work, we discuss a piecewise variant of the well-studied diffusion decision model (termed pDDM) that allows evidence accumulation rates to change during the deliberation process. Given the complex, time-varying nature of this model, standard Bayesian parameter estimation methodologies cannot be used to fit the model. To overcome this, we apply a recently developed simulation-based, hierarchal Bayesian methodology called the probability density approximation (PDA) method. We provide an analysis of this methodology and present results of parameter recovery experiments to demonstrate the strengths and limitations of this approach. With those established, we fit pDDM to data from a perceptual experiment where information changes during the course of trials. This extensible modeling platform opens the possibility of applying sequential sampling models to a range of complex non-stationary decision tasks.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-017-0901-yDOI Listing

Publication Analysis

Top Keywords

diffusion decision
8
decision model
8
sequential sampling
8
sampling models
8
change deliberation
8
deliberation process
8
complex models
8
bayesian
4
bayesian analysis
4
analysis piecewise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!