The basidiomycetes fungus Rhizoctonia solani AG3 is responsible for black scurf disease on potato and occurs in each potato growing area world-wide. In this study, the draft genome sequence of the black scurf pathogen R. solani AG3-PT isolate Ben3 is presented. The genome sequence of R. solani AG3-PT isolate Ben3 consists of 1385 scaffolds. These scaffolds amount to a size of approx. 51 Mb. Considering coverage analyses of contigs, the size of the diploid genome was estimated to correspond to 116 Mb. Gene prediction by applying AUGUSTUS (3.2.1.) resulted in 12,567 identified genes. Based on automatic annotation using GenDBE, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the R. solani AG3-PT isolate Ben3 genome. Comparative analyses including the R. solani AG3 isolate Rhs1AP, also originating from potato, revealed first insights into core genes shared by both isolates and unique determinants of each isolate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-017-1394-x | DOI Listing |
Planta
December 2022
Department of Plant Protection Research, Ardabil Agricultural and Natural Resources Research and Education Center, Ardabil, AREEO, Iran.
Screening for resistance in 40 potato genotypes to Rhizoctonia solani AG-3PT-stem-canker, antioxidant enzymes activity as well as total phenol compounds were documented. Rhizoctonia solani AG-3PT-stem-canker is one of the most devastating diseases that leads to severe economic losses in potatoes, Solanum tuberosum globally. Crop management and eugenic practices, especially the use of resistance can be effective in reducing the disease incidence.
View Article and Find Full Text PDFFront Microbiol
March 2022
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Rhizoctonia solani is a collective group of genetically and pathologically diverse basidiomycetous fungi that damage economically important crops. Its isolates are classified into 13 Anastomosis Groups (AGs) and subgroups having distinctive morphology and host ranges. The genetic factors driving the unique features of pathology are not well characterized due to the limited availability of its annotated genomes.
View Article and Find Full Text PDFInt J Mol Sci
March 2021
Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants' molecular response to this pathogen, we inoculated potatoes with AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of AG3-PT during early phases of interaction with its host has already been characterised.
View Article and Find Full Text PDFThe soil-borne pathogen Rhizoctonia solani infects a broad range of plants worldwide and is responsible for significant crop losses. Rhizoctonia solani AG3-PT attacks germinating potato sprouts underground while molecular responses during interaction are unknown. To gain insights into processes induced in the fungus especially at early stage of interaction, transcriptional activity was compared between growth of mycelium in liquid culture and the growing fungus in interaction with potato sprouts using RNA-sequencing.
View Article and Find Full Text PDFArch Microbiol
September 2017
Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.
The basidiomycetes fungus Rhizoctonia solani AG3 is responsible for black scurf disease on potato and occurs in each potato growing area world-wide. In this study, the draft genome sequence of the black scurf pathogen R. solani AG3-PT isolate Ben3 is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!