Cellular and molecular pathways of structural damage in rheumatoid arthritis.

Semin Immunopathol

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.

Published: June 2017

Structural damage of cartilage and bone tissue is a hallmark of rheumatoid arthritis (RA). The resulting joint destruction constitutes one of the major disease consequences for patients and creates a significant burden for the society. The main cells executing bone and cartilage degradation are osteoclasts and fibroblast-like synoviocytes, respectively. The function of both cell types is heavily influenced by the immune system. In the last decades, research has identified several mediators of structural damage, ranging from infiltrating immune cells and inflammatory cytokines to autoantibodies. These factors result in an inflammatory milieu in the affected joints which leads to an increased development and function of osteoclasts and the transformation of fibroblast-like synoviocytes towards a highly migratory and destructive phenotype. In addition, repair mechanisms mediated by osteoblasts and chondrocytes are strongly impaired by the presence of pro-inflammatory cytokines. This article will review the current knowledge on the mechanisms of joint inflammation and the destruction of bone and cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00281-017-0634-0DOI Listing

Publication Analysis

Top Keywords

structural damage
12
rheumatoid arthritis
8
bone cartilage
8
fibroblast-like synoviocytes
8
cellular molecular
4
molecular pathways
4
pathways structural
4
damage rheumatoid
4
arthritis structural
4
damage cartilage
4

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!