Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism.

Front Bioeng Biotechnol

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Published: May 2017

C metabolic flux analysis (C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of using a multi-scale variant of C MFA known as 2-Scale C metabolic flux analysis (2S-C MFA). In this study, all strains have the galactose metabolism deactivated (Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of in the CEN.PK113-7D Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of in glucose-only medium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443151PMC
http://dx.doi.org/10.3389/fbioe.2017.00031DOI Listing

Publication Analysis

Top Keywords

glucose repression
16
growth rate
12
metabolic flux
8
flux analysis
8
presence galactose
8
galactose classically
8
classically glucose-repressing
8
galactose metabolism
8
cells grown
8
glucose-only medium
8

Similar Publications

Unlabelled: Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process.

View Article and Find Full Text PDF

The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity.

Arch Toxicol

December 2024

Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.

Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) act as vital players in multiple myeloma (MM). Herein, we focused on the function of hsa_circ_0003489 (circ_0003489) in MM development and bortezomib (BTZ) resistance.

Methods: Relative RNA levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Vascular dementia (VaD) refers to a variety of dementias driven by cerebrovascular disease and is the second leading cause of dementia globally. VaD may be caused by ischemic strokes, intracerebral hemorrhage, and/or cerebral small vessel disease, commonly identified as white matter hyperintensities on MRI. The mechanisms underlying these white matter lesions in the periventricular brain are poorly understood.

View Article and Find Full Text PDF

The Crabtree effect in yeast, where cells prefer fermentation over respiration in high -glucose environments, is associated with mitochondrial repression, but the molecular mechanisms were previously unclear. Recently, Vengayil et al. revealed that knocking out the ubp3 gene, encoding a deubiquitinase enzyme, mitigates the Crabtree effect by increasing mitochondrial phosphate levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!