Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the "liver cancer" annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465221PMC
http://dx.doi.org/10.1038/s41598-017-02798-7DOI Listing

Publication Analysis

Top Keywords

early sensitive
12
dems identified
8
mechanistic roles
4
roles micrornas
4
micrornas hepatocarcinogenesis
4
hepatocarcinogenesis study
4
study thioacetamide
4
thioacetamide multiple
4
multiple doses
4
doses time-points
4

Similar Publications

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

Objectives: The aim of this study was to develop and validate a nomogram model that predicts the risk of bone metastasis (BM) in a prostate cancer (PCa) population.

Methods: We retrospectively collected and analyzed the clinical data of patients with pathologic diagnosis of PCa from January 1, 2013 to December 31, 2022 in two hospitals in Yangzhou, China. Patients from the Affiliated Hospital of Yangzhou University were divided into a training set and patients from the Affiliated Clinical College of Traditional Chinese Medicine of Yangzhou University were divided into a validation set.

View Article and Find Full Text PDF

Detecting low birth weight is crucial for early identification of at-risk pregnancies which are associated with significant neonatal and maternal morbidity and mortality risks. This study presents an efficient and interpretable framework for unsupervised detection of low, very low, and extreme birth weights. While traditional approaches to managing class imbalance require labeled data, our study explores the use of unsupervised learning to detect anomalies indicative of low birth weight scenarios.

View Article and Find Full Text PDF

Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.

Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!