It has been suggested that medications can increase heat stroke (HS) susceptibility/severity. We investigated whether the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) increases HS severity in a rodent model. Core temperature (T) of male, C57BL/6J mice ( = 45) was monitored continuously, and mice were given a dose of INDO [low dose (LO) 1 mg/kg or high dose (HI) 5 mg/kg in flavored treat] or vehicle (flavored treat) before heating. HS animals were heated to 42.4°C and euthanized at three time points for histological, molecular, and metabolic analysis: onset of HS [maximal core temperature (T)], 3 h of recovery [minimal core temperature or hypothermia depth (HYPO)], and 24 h of recovery (24 h). Nonheated (control) animals underwent identical treatment in the absence of heat. INDO (LO or HI) had no effect on physiological indicators of performance (e.g., time to T, thermal area, or cooling time) during heating or recovery. HI INDO resulted in 45% mortality rate by 24 h (HI INDO + HS group). The gut showed dramatic increases in gross morphological hemorrhage in HI INDO + HS in both survivors and nonsurvivors. HI INDO + HS survivors had significantly lower red blood cell counts and hematocrit suggesting significant hemorrhage. In the liver, HS induced cell death at HYPO and increased inflammation at T, HYPO, and 24 h; however, there was additional effect with INDO + HS group. Furthermore, the metabolic profile of the liver was disturbed by heat, but there was no additive effect of INDO + HS. This suggests that there is an increase in morbidity risk with INDO + HS, likely resulting from significant gut injury. This paper suggests that in a translational mouse model, NSAIDs may be counterindicated in situations that put an individual at risk of heat injury. We show here that a small, single dose of the NSAID indomethacin before heat stroke has a dramatic and highly damaging effect on the gut, which ultimately leads to increased systemic morbidity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625077 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00242.2017 | DOI Listing |
Front Med (Lausanne)
December 2024
Department of Nursing, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China.
Introduction: Early prediction of multiple organ dysfunction syndrome (MODS) secondary to severe heat stroke (SHS) is crucial for improving patient outcomes. This study aims to develop and validate a risk prediction model for those patients based on immediate assessment indicators on ICU admission.
Methods: Two hundred eighty-four cases with SHS in our hospital between July 2009 and April 2024 were retrospectively reviewed, and categorized into non-MODS and MODS groups.
Ther Adv Hematol
January 2025
Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, #111 Liuhua Road, Guangzhou, 510010, Guangdong, China.
Background: Heat stroke (HS), a potentially fatal heat-related illness, is often accompanied by disseminated intravascular coagulation (DIC) early, resulting in a poorer prognosis. Unfortunately, diagnosis by current DIC scores is often too late to identify DIC. This study aims to investigate the predictors and predictive model of DIC in HS to identify DIC early.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address:
Background: Although the association of short-term ozone and heatwave exposure with cerebrovascular disease has been well documented, it remains largely unknown whether their co-exposure could synergistically trigger ischemic stroke (IS) mortality.
Methods: We performed an individual-level, time-stratified case-crossover analysis utilizing province-wide IS deaths (n =59079) in warm seasons (May-September) during 2016-2019, across Jiangsu, eastern China. Heatwave was defined according to a combination of multiple temperature thresholds (90-97.
Mol Neurobiol
January 2025
Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA.
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!