Minimizing whole-body metabolic cost has been suggested to drive the neural processes of locomotor adaptation. Mechanical work performed by the legs should dictate the major changes in whole-body metabolic cost of walking while providing greater insight into temporal and spatial mechanisms of adaptation. We hypothesized that changes in mechanical work by the legs during an asymmetric split-belt walking adaptation task could explain previously observed changes in whole-body metabolic cost. We predicted that subjects would immediately increase mechanical work performed by the legs when first exposed to split-belt walking, followed by a gradual decrease throughout adaptation. Fourteen subjects walked on a dual-belt instrumented treadmill. Baseline trials were followed by a 10-min split-belt adaptation condition with one belt running three times faster than the other. A post-adaptation trial with both belts moving at 0.5 m s demonstrated neural adaptation. As predicted, summed mechanical work from both legs initially increased abruptly and gradually decreased over the adaptation period. The initial increase in work was primarily due to increased positive work by the leg on the fast belt during the pendular phase of the gait cycle. Neural adaptation in asymmetric split-belt walking reflected the reduction of pendular phase work in favor of more economical step-to-step transition work. This may represent a generalizable framework for how humans initially and chronically learn new walking patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576064PMC
http://dx.doi.org/10.1242/jeb.149450DOI Listing

Publication Analysis

Top Keywords

mechanical work
20
neural adaptation
12
whole-body metabolic
12
metabolic cost
12
split-belt walking
12
work
9
adaptation
9
changes mechanical
8
adaptation asymmetric
8
work performed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!