The effects of structure on pre-mRNA processing and stability.

Methods

Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA. Electronic address:

Published: August 2017

Pre-mRNA molecules can form a variety of structures, and both secondary and tertiary structures have important effects on processing, function and stability of these molecules. The prediction of RNA secondary structure is a challenging problem and various algorithms that use minimum free energy, maximum expected accuracy and comparative evolutionary based methods have been developed to predict secondary structures. However, these tools are not perfect, and this remains an active area of research. The secondary structure of pre-mRNA molecules can have an enhancing or inhibitory effect on pre-mRNA splicing. An example of enhancing structure can be found in a novel class of introns in zebrafish. About 10% of zebrafish genes contain a structured intron that forms a bridging hairpin that enforces correct splice site pairing. Negative examples of splicing include local structures around splice sites that decrease splicing efficiency and potentially cause mis-splicing leading to disease. Splicing mutations are a frequent cause of hereditary disease. The transcripts of disease genes are significantly more structured around the splice sites, and point mutations that increase the local structure often cause splicing disruptions. Post-splicing, RNA secondary structure can also affect the stability of the spliced intron and regulatory RNA interference pathway intermediates, such as pre-microRNAs. Additionally, RNA secondary structure has important roles in the innate immune defense against viruses. Finally, tertiary structure can also play a large role in pre-mRNA splicing. One example is the G-quadruplex structure, which, similar to secondary structure, can either enhance or inhibit splicing through mechanisms such as creating or obscuring RNA binding protein sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737760PMC
http://dx.doi.org/10.1016/j.ymeth.2017.06.001DOI Listing

Publication Analysis

Top Keywords

secondary structure
20
rna secondary
12
structure
9
structure pre-mrna
8
pre-mrna molecules
8
pre-mrna splicing
8
splicing example
8
genes structured
8
splice sites
8
secondary
7

Similar Publications

Using time as an additional design parameter in electromagnetism, photonics, and wave physics is attracting considerable research interest, motivated by the possibility to explore physical phenomena and engineering opportunities beyond the limits of time-invariant systems. Here, we report the experimental demonstration of enhanced broadband absorption of electromagnetic waves in a continuously modulated time-varying system, exceeding one of the key theoretical limits of linear time-invariant absorbers. This is achieved by harnessing the frequency-wave vector transitions and enhanced interference effects enabled by breaking both continuous space- and time-translation symmetries in a periodically time-modulated absorbing structure operating at radio frequencies.

View Article and Find Full Text PDF

MXene is widely used in the electromagnetic interference (EMI) shielding field. However, the high electromagnetic reflectivity of pure MXene causes potential secondary EMI pollution. This study presents a hollow egg-box structure used in MXene composite film, by which the reflectivity (R) could decrease from 0.

View Article and Find Full Text PDF

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.

View Article and Find Full Text PDF

Robust RNA secondary structure prediction with a mixture of deep learning and physics-based experts.

Biol Methods Protoc

January 2025

Department of Physics, George Washington University, Washington, DC 20052, United States.

A mixture-of-experts (MoE) approach has been developed to mitigate the poor out-of-distribution (OOD) generalization of deep learning (DL) models for single-sequence-based prediction of RNA secondary structure. The main idea behind this approach is to use DL models for in-distribution (ID) test sequences to leverage their superior ID performances, while relying on physics-based models for OOD sequences to ensure robust predictions. One key ingredient of the pipeline, named MoEFold2D, is automated ID/OOD detection via consensus analysis of an ensemble of DL model predictions without requiring access to training data during inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!