Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. In the past, several prospective and retrospective validation studies have taken place in the area of serious eye damage/eye irritation testing. Success in terms of complete replacement of the regulatory in vivo Draize rabbit eye test has not yet been achieved. A very important aspect to ensure development of successful alternative test methods and/or strategies for serious eye damage/eye irritation testing is the selection of appropriate reference chemicals. A set of 80 reference chemicals was selected for the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project, in collaboration with Cosmetics Europe, from the Draize Reference Database published by Cosmetics Europe based on key criteria that were set in their paper (e.g. balanced by important driver of classification and physical state). The most important goals of the CON4EI project were to identify the performance of eight in vitro alternative tests in terms of driver of classification and to identify similarities/differences between the methods in order the build a successful testing strategy that can discriminate between all UN GHS categories. This paper provides background on selection of the test chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2017.06.001DOI Listing

Publication Analysis

Top Keywords

reference chemicals
12
irritation testing
12
eye irritation
8
serious eye
8
eye damage/eye
8
damage/eye irritation
8
testing strategy
8
cosmetics europe
8
driver classification
8
chemicals
6

Similar Publications

An evolutionary perspective for the exposome.

Exposome

February 2024

MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK.

The exposome was proposed following the realization that most human diseases have an environmental rather than a genetic (hereditary) origin. Non-communicable diseases are, in fact, the consequence of multiple exposures that activate a sequence of stages in a multistage process that already starts in early life. This attracted attention to both the multiplicity (in fact, potentially the totality) of exposures humans are exposed to since conception and to the life-long perspective of disease causation.

View Article and Find Full Text PDF

Background: This study aimed to analyze the changing trend of diabetes drugs clinical trials in China during 2013-2023, and provided a reference for the research and development of diabetes drugs.

Methods: Diabetes drug clinical trial data were obtained from the registration and information disclosure platform of the National Medical Products Administration (NMPA) between January 1, 2013, and December 31, 2023. Trends of clinical trials on diabetes drugs were systematically analyzed in terms of characteristics, trial design, time trends, drug type, and indications.

View Article and Find Full Text PDF

When Photoelectrons Meet Gas Molecules: Determining the Role of Inelastic Scattering in Ambient Pressure X-ray Photoelectron Spectroscopy.

ACS Cent Sci

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Inelastic photoelectron scattering (IPES) by gas molecules, a critical phenomenon observed in ambient pressure X-ray photoelectron spectroscopy (APXPS), complicates spectral interpretation due to kinetic energy loss in the primary spectrum and the appearance of additional features at higher binding energies. In this study, we systematically investigate IPES in various gas environments using APXPS, providing detailed insights into interactions between photoelectrons emitted from solid surfaces and surrounding gas molecules. Core-level XPS spectra of Au, Ag, Zn, and Cu metals were recorded over a wide kinetic energy range in the presence of CO, N, Ar, and H gases, demonstrating the universal nature of IPES across different systems.

View Article and Find Full Text PDF

Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of CoO/NiO microspheres.

Nanoscale Horiz

January 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.

A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.

View Article and Find Full Text PDF

Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale.

Small Methods

January 2025

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!