Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

BMC Pharmacol Toxicol

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.

Published: June 2017

Background: The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects.

Method: We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles.

Results: We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs via DDIs. This allowed us to identify potential DDI-induced ADRs not yet clinically reported. The ability of the models to quantify adverse effects between drug classes also suggests that we may be able to select drug combinations that minimize the risk of ADRs.

Conclusion: Almost all information on DDI-induced ADRs is generated after drug approval. This situation poses significant health risks for vulnerable patient populations with comorbidities. To help mitigate the risks, we developed a robust probabilistic approach to prospectively predict DDI-induced ADRs. Based on this approach, we developed prediction models for 1,096 ADRs and used them to predict the propensity of all pairwise combinations of nearly 800 drugs to be associated with these ADRs via DDIs. We made the predictions publicly available via internet access.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465578PMC
http://dx.doi.org/10.1186/s40360-017-0153-6DOI Listing

Publication Analysis

Top Keywords

ddi-induced adrs
20
adrs
12
induce adrs
12
drug
10
adverse drug
8
drug reactions
8
induced drug-drug
8
drug-drug interactions
8
adverse health
8
effects caused
8

Similar Publications

Article Synopsis
  • There is a need for additional safety assessments for drugs after they hit the market, focusing on both adverse drug reactions (ADRs) from individual drugs and those resulting from drug-drug interactions (DDIs).
  • A new Bayesian method is introduced to enhance sensitivity in detecting potential DDIs using data from the spontaneous reporting system (SRS) by borrowing information from similar drugs.
  • Simulation results show that this new method increases detection sensitivity by about 20 points compared to existing methods, allowing for earlier identification of potential DDIs, especially when similar drugs show comparable observed-expected ratios.
View Article and Find Full Text PDF

Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

BMC Pharmacol Toxicol

June 2017

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.

Background: The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs.

View Article and Find Full Text PDF

Application of a Physiologically Based Pharmacokinetic Model to Study Theophylline Metabolism and Its Interactions With Ciprofloxacin and Caffeine.

CPT Pharmacometrics Syst Pharmacol

February 2016

Biosciences & Biotechnology Division, Physics & Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore California USA.

Theophylline is a commonly used bronchodilator. However, due to its narrow therapeutic range, moderate elevation of serum concentration can result in adverse drug reactions (ADRs). ADRs occur because of interhuman pharmacokinetic variability and interactions with coprescribed medicines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!