Alzheimer Diseases (AD) is a multifactorial pathology characterized by a complex etiology. The hallmarks of AD, such as Aβ deposits in senile plaque and Neurofibrillary Tangles (NFT), are strongly intertwined with Reactive Oxygen Species (ROS) production and oxidative stress (OS), which are considered the common effectors of the cascade of degenerative events. An increasing body of evidence reveals that both mitochondrial abnormalities and metal accumulations synergistically act as major producers of ROS, thus contributing to neuronal toxicity. Consequently, the detrimental role of ROS production together with the neurodegenerative events involved in AD has been widely investigated as new potential therapeutic strategies. This review will concisely summarize the link between OS and the hallmarks of AD, emphasizing on their strong correlation with neurodegenerative events and elucidating the pivotal role of ROS in AD pathology. Furthermore, through this review, we will provide a short account of some of the efforts, challenges and opportunities in developing multitarget drugs by addressing ROS production, metal accumulation and protein depositions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026617666170607114232DOI Listing

Publication Analysis

Top Keywords

ros production
12
oxidative stress
8
mitochondrial abnormalities
8
role ros
8
neurodegenerative events
8
review will
8
ros
5
stress mitochondrial
4
abnormalities proteins
4
proteins deposition
4

Similar Publications

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Hypochlorous acid(HClO)/hypochlorite ion (ClO-) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO- in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.

View Article and Find Full Text PDF

TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.

J Integr Plant Biol

December 2024

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China.

Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!