Nano-carriers for the Treatment of Tuberculosis.

Recent Pat Antiinfect Drug Discov

Glocal School of Pharmacy, Glocal University, Saharanpur-247121, Uttar Pradesh, India.

Published: July 2018

Background: Nano size based drug delivery systems are an emerging technique with the potential to develop new strategies involving handling of drugs at the nanometer scale. There are many nano-based drug delivery systems that have been extensively reported as drug carriers for the treatment of tuberculosis.

Methods: There are numerous nano sized drug delivery systems like lipid nanoparticles, polymeric micelle, carbon nanotubes and polymeric nanoparticles that have been reported for a long time to treat diseases. There are a number of drawbacks in conventional TB dosage forms such as the development of multiple drug resistance, resulting in intolerable toxicity and high drug dose required. So, to overcome the drawbacks of conventional therapy, there is a need for a new drug delivery system with an aim to reduce the side effects of drug treatment. Nano-sized based drug delivery systems have considerable potential for the treatment of tuberculosis. These delivery systems have several advantages like high stability, high loading capacity, the feasibility of incorporation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, and prolonged drug release from the matrix. These advantages enable enhanced drug solubility, bioavailability, reduced dosing frequency, high targeting, and may resolve the problem of non adherence to prescribed therapy, which is one of the major obstacles in the control of tuberculosis epidemics.

Conclusion: This article gives an exhaustive review of patents and research papers published over the years on the challenges, the current treatment therapy of the disease faces, and potential advantages of nano sized formulations to offer more effective treatment and prevention for tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574891X12666170427120230DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
delivery systems
20
drug
11
treatment tuberculosis
8
based drug
8
nano sized
8
drawbacks conventional
8
delivery
6
systems
5
treatment
5

Similar Publications

Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery.

Biomacromolecules

January 2025

Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.

The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Progress in antileishmanial drugs: Mechanisms, challenges, and prospects.

PLoS Negl Trop Dis

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.

Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!