A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of the fcc-to-hcp phase transformation in solid Ar. | LitMetric

Mechanism of the fcc-to-hcp phase transformation in solid Ar.

J Chem Phys

Department of Chemical Engineering, University of California, Davis, California 95616, USA.

Published: June 2017

We present an atomistic description of the fcc-to-hcp transformation mechanism in solid argon (Ar) obtained from transition path sampling molecular dynamics simulation. The phase transition pathways collected during the sampling for an 8000-particle system reveal three transition types according to the lattice deformation and relaxation details. In all three transition types, we see a critical accumulation of defects and uniform growth of a less ordered transition state, followed by a homogeneous growth of an ordered phase. Stacking disorder is discussed to describe the transition process and the cooperative motions of atoms in {111} planes. We investigate nucleation with a larger system: in a system of 18 000 particles, the collective movements of atoms required for this transition are facilitated by the formation and growth of stacking faults. However, the enthalpy barrier is still far beyond the thermal fluctuation. The high barrier explains previous experimental observations of the inaccessibility of the bulk transition at low pressure and its sluggishness even at extremely high pressure. The transition mechanism in bulk Ar is different from Ar nanoclusters as the orthorhombic intermediate structure proposed for the latter is not observed in any of our simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4983167DOI Listing

Publication Analysis

Top Keywords

transition
9
three transition
8
transition types
8
growth ordered
8
mechanism fcc-to-hcp
4
fcc-to-hcp phase
4
phase transformation
4
transformation solid
4
solid atomistic
4
atomistic description
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!