Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rate constants and product branching fractions of reactions between diatomic interhalogens (ICl, ClF) and a series of anions (Br, I) and cations (Ar, N) are measured using a selected ion flow tube apparatus and reported over the temperature range 200-500 K. The efficiency of both anion reactions with ICl is 2%-3% at 300 K to yield Cl, increasing with temperature in a manner consistent with the small endothermicities of the reactions. The anion reactions with ClF are 10%-20% efficient at 300 K to yield Cl and also show a positive temperature dependence despite being highly exothermic. The stationary points along the anion + ClF reaction coordinates were calculated using density functional theory, showing no endothermic barriers inhibiting reaction. The observed temperature dependence can be rationalized by a decreasing dipole attraction with increasing rotational energy, but confirmation requires trajectory calculations of the systems. All four cation reactions are fairly efficient at 300 K with small positive temperature dependences, despite large exothermicities to charge transfer. Three of the four reactions proceed exclusively by dissociative charge transfer to yield Cl. The N + ClF reaction proceeds by both non-dissociative and dissociative charge transfer, with the non-dissociative channel surprisingly increasing with increasing temperature. The origins of these behaviors are not clear and are discussed within the framework of charge-transfer reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4984303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!