Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model.

PLoS One

Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.

Published: September 2017

TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5-nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse-human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5-nomilin interaction. Based on these results, an hTGR5-nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5-nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464637PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179226PLOS

Publication Analysis

Top Keywords

tgr5
10
amino acid
8
acid residues
8
htgr5-nomilin interaction
8
binding model
8
tgr5 agonists
8
identification key
4
key amino
4
htgr5-nomilin
4
residues htgr5-nomilin
4

Similar Publications

Proline rich-39 (PR-39) is a natural antimicrobial protein with good antibacterial and anti-inflammatory activities. The miniature Wuzhishan pig (WZSP) has important similarities to humans in anatomical structure, physiological characteristics, and nutrient metabolism that make it an important model animal for biomedical research. This study aimed to investigate the protective effect and therapeutic mechanism of PR-39 on intestinal barrier function using the LPS-induced enteritis model in WZSPs.

View Article and Find Full Text PDF

Probiotics for the treatment of hyperlipidemia: Focus on gut-liver axis and lipid metabolism.

Pharmacol Res

March 2025

School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China. Electronic address:

Hyperlipidemia, a metabolic disorder marked by dysregulated lipid metabolism, is a key contributor to the onset and progression of various chronic diseases. Maintaining normal lipid metabolism is critical for health, as disruptions lead to dyslipidemia. The gut and liver play central roles in lipid homeostasis, with their bidirectional communication, known as the gut-liver axis, modulated by bile acids (BAs), gut microbiota, and their metabolites.

View Article and Find Full Text PDF

Specnuezhenide Alleviates Senile Osteoporosis by Activating TGR5/FXR Signaling in Bone Marrow Mesenchymal Stem Cells and RANKL-Induced Osteoclasts.

Drug Des Devel Ther

March 2025

Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China.

Background: Specnuezhenide (SPN) is an iridoid glycoside isolated from , an herb prescribed for the treatment of senile osteoporosis. However, the direct role of SPN on bone metabolism remains unclear. In this study, the effects of SPN on d-galactose (d-gal)-induced mice, bone marrow mesenchymal stem cells (BMSCs), and nuclear factor-κB ligand-induced osteoclasts were examined.

View Article and Find Full Text PDF

Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1 (GPBAR1), is a cell surface receptor involved in key physiological processes, including glucose homeostasis and energy metabolism. Recent research has focused on the role of TGR5 activation in preventing or treating diabetes while also highlighting its potential impact on the progression of diabetic complications. Functional foods and edible plants have emerged as valuable sources of natural compounds that can activate TGR5, offering potential therapeutic benefits for diabetes management.

View Article and Find Full Text PDF

Modulation of satiety hormones by Bacteroides thetaiotaomicron, Bacteroides fragilis and their derivatives.

AMB Express

March 2025

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Obesity is a complex disorder influenced by various factors, including gut microbiota, which play a crucial role in metabolic regulation. This study is aimed to investigate the effects of Bacteroides thetaiotaomicron and Bacteroides fragilis, along with their derivatives-outer membrane vesicles (OMVs) and cell-free supernatant (CFS)-on the expression and secretion of satiety hormones in the murine intestinal secretin tumor cell line (STC-1). We examined the expression of peptide YY (PYY), glucagon-like peptide-1 and -2 (GLP-1 and GLP-2, encoded by the GCG gene), the enzyme prohormone convertase-1 (PC1/PCSK1 gene), and the receptors G protein-coupled receptor 119 and 120 (GPR119 and GPR120), and G-protein-coupled bile acid receptor (TGR5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!