In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae) was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales) that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO) concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt). Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea) were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP). There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining, architectural changes, etc.) which will likely affect this ecosystem. Therefore, the addition of bacterial community profiling and diversity analysis into the estuary's ongoing monitoring program would provide a more comprehensive view of the ecological status of the Estuary of Bilbao.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464593PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178755PLOS

Publication Analysis

Top Keywords

bacterial community
24
estuary bilbao
16
community changes
8
changes estuary
8
environmental factors
8
community structure
8
precipitation periods
8
associated concentration
8
estuary
7
bacterial
6

Similar Publications

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Temperature alters bacterial community structure in sediment of mountain stream.

Sci Rep

December 2024

Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.

Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.

View Article and Find Full Text PDF

Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!