Precise Control of the Lateral and Vertical Growth of Two-Dimensional Ag Nanoplates.

Chemistry

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.

Published: July 2017

Tuning localized surface plasmon resonance (LSPR) is crucial for practical applications of two-dimensional Ag nanoplates (AgNPs) and relies on the precise control of their lateral length or/and thickness. In the present seed-mediated synthetic method, by taking advantage of underpotential deposition (UPD) of Cu on the (111) surfaces of AgNPs, a solely lateral growth of AgNPs was achieved when Cu(NO ) was employed, while a vertical growth of AgNPs could be attained by introducing CuCl into our growth solutions. The lateral length and the vertical thickness of the AgNPs could be tuned in the ranges of 115 to nearly 300 nm and 13.4 to around 200 nm, respectively. Along with control of the dimensional size of AgNPs, LSPR could also be tuned in the visible to near infrared range. Plausible growth mechanisms for the precise control of the lateral and vertical growth of AgNPs were proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201701146DOI Listing

Publication Analysis

Top Keywords

precise control
12
control lateral
12
vertical growth
12
growth agnps
12
lateral vertical
8
two-dimensional nanoplates
8
lateral length
8
agnps
7
growth
6
lateral
5

Similar Publications

High clinical utility of long-read sequencing for precise diagnosis of congenital adrenal hyperplasia in 322 probands.

Hum Genomics

January 2025

Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P.

Methodology: This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH.

Results: A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands).

View Article and Find Full Text PDF

Background: Facial trauma repair requires precise reconstruction while preserving aesthetic units. Traditional local anesthesia can distort tissue planes and compromise surgical precision.

Methods: This prospective study evaluated landmark-based nerve blocks versus local infiltration for complex facial laceration repair in emergency settings from January 2022 through February 2023.

View Article and Find Full Text PDF

This research is dedicated to improving the control system of wind turbines (WT) to ensure optimal efficiency and rapid responsiveness. To achieve this, the fuzzy logic control (FLC) method is implemented to control the converter in the rotor side (RSC) of a doubly fed induction generator (DFIG) and its performance is compared with an optimized proportional integral (PI) controller. The study demonstrated an enhancement in the performance of the DFIG through the utilization of the proposed FLC, effectively overcoming limitations and deficiencies observed in the conventional controllers, this approach significantly improved the performance of the wind turbine.

View Article and Find Full Text PDF

Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).

View Article and Find Full Text PDF

Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!