Background: Reduced cortical thickness is a candidate biological marker of depression, although findings are inconsistent. This could reflect analytic heterogeneity, such as use of region-wise cortical thickness based on the Freesurfer Desikan-Killiany (DK) atlas or surface-based morphometry (SBM). The Freesurfer Destrieux (DS) atlas (more, smaller regions) has not been utilized in depression studies. This could also reflect differential gender and age effects.

Methods: Cortical thickness was collected from 170 currently depressed adults and 52 never-depressed adults. Visually inspected and approved Freesurfer-generated surfaces were used to extract cortical thickness estimates according to the DK atlas (68 regions) and DS atlas (148 regions) for region-wise analysis (216 total regions) and for SBM.

Results: Overall, except for small effects in a few regions, the two region-wise approaches generally failed to discriminate depressed adults from nondepressed adults or current episode severity. Differential effects by age and gender were also rare and small in magnitude. Using SBM, depressed adults showed a significantly thicker cluster in the left supramarginal gyrus than nondepressed adults (P = 0.047) but there were no associations with current episode severity.

Conclusions: Three analytic approaches (i.e., DK atlas, DS atlas, and SBM) converge on the notion that cortical thickness is a relatively weak discriminator of current depression status. Differential age and gender effects do not appear to represent key moderators. Robust associations with demographic factors will likely hinder translation of cortical thickness into a clinically useful biomarker. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. Hum Brain Mapp 38:4370-4385, 2017. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546998PMC
http://dx.doi.org/10.1002/hbm.23664DOI Listing

Publication Analysis

Top Keywords

cortical thickness
28
depressed adults
12
current depression
8
regions region-wise
8
nondepressed adults
8
current episode
8
age gender
8
hum brain
8
brain mapp
8
2017 2017
8

Similar Publications

Traumatic brachial plexus lesions (TBPL) can lead to permanent impairment of hand function despite timely brachial plexus surgical treatment. In selected cases with no recovery of hand function, the affected forearm can be amputated and replaced by a bionic hand to regain prehensile function. This cross-sectional study aimed to assess (sub)cortical motor activity and functional connectivity changes after TBPL and bionic reconstruction.

View Article and Find Full Text PDF

Structural remodeling of the brain cortex and functional recovery following hypoglossal-facial neurorrhaphy in patients with facial paralysis.

Brain Res

December 2024

Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 10070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; U1195, Inserm et Universite Paris-Saclay, 94276 Le Kremlin-Bicetre, France. Electronic address:

Objective: Peripheral nerve injury results in functional alterations of the corresponding active brain areas, which are closely related to functional recovery. Whether such functional plasticity induces relative anatomical structural changes remains to be investigated.

Methods: In this study, we investigated the changes in brain cortical thickness in patients with facial paralysis following neurorrhaphy treatment at different follow-up times.

View Article and Find Full Text PDF

Background: The National Institutes of Health (NIH) Toolbox Cognition Battery is increasingly being used as a standardized test to examine cognitive functioning in multicentric studies. This study examines the associations between the NIH Toolbox Cognition Battery composite scores with neuroimaging metrics using data from the Adolescent Brain Cognitive Development (ABCD) study to elucidate the neurobiological and neuroanatomical correlates of these cognitive scores.

Methods: Neuroimaging data from 5290 children (mean age 9.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Cortical lesions impact cognitive decline in multiple sclerosis via volume loss of nonlesional cortex.

Ann Clin Transl Neurol

December 2024

MS Center Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Objective: To assess the interrelationship between cortical lesions and cortical thinning and volume loss in people with multiple sclerosis within cortical networks, and how this relates to future cognition.

Methods: In this longitudinal study, 230 people with multiple sclerosis and 60 healthy controls underwent 3 Tesla MRI at baseline and neuropsychological assessment at baseline and 5-year follow-up. Cortical regions (N = 212) were divided into seven functional networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!