FINE-SCALE GENETIC STRUCTURE OF A TURKEY OAK FOREST.

Evolution

Departments of Botany and Genetics, University of Georgia, Athens, Georgia, 30602.

Published: February 1995

Theoretical models and computer simulations of the genetic structure of a continuous population predict the existence of patches of highly inbred individuals when gene flow within the population is limited. A map of the three genotypes of a two-allele locus is expected to exhibit patches of homozygotes embedded in a matrix of heterozygotes, when gene flow is limited. A search for such patch structure was made on a 160 × 160 m plot within a continuous 60+ ha old-growth stand of Quercus laevis (turkey oak). Approximately 3400 trees were genotyped for 9 polymorphic loci using starch-gel electrophoresis, and the genetic structure was analyzed with spatial autocorrelation (both nominal and interval), hierarchical F statistics, and number-of-alleles-in-common. Adults (diameter at breast height > 0) and juveniles were analyzed separately but showed similar structure. While no distinct patch structure was found, a greater degree of relatedness was observed on a scale of 5 m-10 m than at greater distances, probably because of the limited acorn dispersal from maternal trees and a small amount of cloning by root sprouts. A computer simulation of a 10,000 tree forest breeding for 10,000 yr indicates that the effective neighborhood sizes (of randomly drawn seed- and pollen-donors) are both in excess of 440 individuals. The model thus cannot distinguish the observed data from panmictic mating.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05963.xDOI Listing

Publication Analysis

Top Keywords

genetic structure
12
turkey oak
8
gene flow
8
patch structure
8
structure
6
fine-scale genetic
4
structure turkey
4
oak forest
4
forest theoretical
4
theoretical models
4

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Despite the recent surge of viral metagenomic studies, it remains a significant challenge to recover complete virus genomes from metagenomic data. The majority of viral contigs generated from de novo assembly programs are highly fragmented, presenting significant challenges to downstream analysis and inference. To address this issue, we have developed Virseqimprover, a computational pipeline that can extend assembled contigs to complete or nearly complete genomes while maintaining extension quality.

View Article and Find Full Text PDF

Kartagener syndrome is a rare ciliopathic genetic disorder characterized by a triad of chronic sinusitis, situs inversus, and bronchiectasis. The underlying pathophysiology involves reduced ciliary motility due to defects in ciliary structure and function within the respiratory tract and fallopian tubes. Diagnosis is typically confirmed through imaging studies such as X-rays, CT scans, and echocardiograms, which reveal the abnormal orientation of the heart and other organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!