Novel molecularly imprinted polymers (MIPs) based on the technique of surface-enhanced Raman scattering (SERS) were successfully prepared. Firstly, ZnO nanorods were fabricated with Ag by reduction of Ag on the surface of the ZnO nanorods. Then, ZnO/Ag heterostructures were used as the substrate, rhodamine 6G was used as the template molecule, acrylamide was used as the functional monomer, ethylene glycol dimethacrylate was used as the cross-linker, and 2,2'-azobis(2-methylpropionitrile) was used as the initiator to prepare the ZnO/Ag MIPs (ZOA-MIPs). Through characterization analysis, it was proved that the novel ZOA-MIPs exhibited excellent SERS properties and selectivity. Under the optimal conditions, there was a good linear relationship (R = 0.996) between the Raman signal (at 1654 cm) and the concentration of the templates, and the detection limit was 10 mol L. It was also proved that the ZOA-MIPs had the property of self-cleaning, resulting in good reusability. It is envisaged that the sensitivity of SERS coupled with the selectivity of MIPs could result in a promising chemosensor for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-017-0410-y | DOI Listing |
Biosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).
View Article and Find Full Text PDFInt J Pharm
January 2025
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India. Electronic address:
Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!