Background: An observational tennis serve analysis (OTSA) tool was developed using previously established body positions from three-dimensional kinematic motion analysis studies. These positions, defined as nodes, have been associated with efficient force production and minimal joint loading. However, the tool has yet to be examined scientifically.
Purpose: The primary purpose of this investigation was to determine the inter-observer reliability for each node between two health care professionals (HCPs) that developed the OTSA, and secondarily to investigate the validity of the OTSA.
Methods: Two separate studies were performed to meet these objectives. An inter-observer reliability study preceded the validity study by examining 28 videos of players serving. Two HCPs graded each video and scored the presence or absence of obtaining each node. Discriminant validity was determined in 33 tennis players using video taped records of three first serves. Serve mechanics were graded using the OSTA and categorized players into those with good ( ≥ 5) and poor ( ≤ 4) mechanics. Participants performed a series of field tests to evaluate trunk flexibility, lower extremity and trunk power, and dynamic balance.
Results: The group with good mechanics demonstrated greater backward trunk flexibility (p=0.02), greater rotational power (p=0.02), and higher single leg countermovement jump (p=0.05). Reliability of the OTSA ranged from = 0.36-1.0, with the majority of all the nodes displaying substantial reliability (K>0.61).
Conclusion: This study provides HCPs with a valid and reliable field tool used to assess serve mechanics. Physical characteristics of trunk mobility and power appear to discriminate serve mechanics between players. Future intervention studies are needed to determine if improvement in physical function contribute to improved serve mechanics.
Level Of Evidence: 3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455193 | PMC |
ACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychology, Crean College of Health and Behavioral Sciences, Chapman University, Orange, California, United States of America.
Accumulating evidence indicates that unpredictable signals in early life represent a unique form of adverse childhood experiences (ACEs) associated with disrupted neurodevelopmental trajectories in children and adolescents. The Questionnaire of Unpredictability in Childhood (QUIC) was developed to assess early life unpredictability [1], encompassing social, emotional, and physical unpredictability in a child's environment, and has been validated in three independent cohorts. However, the importance of identifying ACEs in diverse populations, including non-English speaking groups, necessitates translation of the QUIC.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland.
The quality of the enamel plays a critical role in the retention and performance of orthodontic brackets. This systematic review and meta-analysis aimed to evaluate the effect of resin infiltration pretreatment on the shear bond strength (SBS) of orthodontic brackets. An electronic search was conducted in October 2024 using PubMed, Web of Science (WoS), and Scopus databases, employing the keywords (resin infiltration AND bracket); (ICON AND bracket).
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!