Simplifying the design of microstructured optical fibre pressure sensors.

Sci Rep

Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, Brazil.

Published: June 2017

In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462807PMC
http://dx.doi.org/10.1038/s41598-017-03206-wDOI Listing

Publication Analysis

Top Keywords

design microstructured
8
microstructured optical
8
pressure sensors
8
capillary fibre
8
fibre embedded
8
embedded core
8
pressure-induced material
8
material birefringence
8
fibre
6
pressure
5

Similar Publications

Gigahertz Surface Acoustic Wave Topological Rainbow in Nanoscale Phononic Crystals.

Phys Rev Lett

December 2024

Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.

Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.

View Article and Find Full Text PDF

Coherence scanning interferometry (CSI) is a non-destructive method for measuring the microstructure surface topography, but it fails to retrieve the bottom topography because the detection light is blocked by the sidewalls of the high aspect ratio (HAR) samples. Our team has proposed CSI technology with the detection light transparent to the sample to measure the surface topography thus ensuring the numerical aperture of the detection light with high throughput. However, a dedicated optical path to monitor the aberrations caused by the modulation from the sample is necessary and a complex optical path is added for aberration correction, which inevitably increases the design complexity and component costs of the optical system.

View Article and Find Full Text PDF

An open channel exposed core microstructured fiber is designed and fabricated for pressure and refractive index sensing. The core is on a flat platform surrounded by the cladding on which there is an open gap that allows the surrounding medium to contact the core. Due to the specially designed microstructure, the external pressure compresses the fiber core and causes changes of birefringence because of the photo-elastic effect.

View Article and Find Full Text PDF

Background: High-resolution brain imaging is crucial in clinical diagnosis and neuroscience, with ultra-high field strength MRI systems ( ) offering significant advantages for imaging neuronal microstructures. However, achieving magnetic field homogeneity is challenging due to engineering faults during the installation of superconducting strip windings and the primary magnet.

Purpose: This study aims to design and optimize active superconducting shim coils for a 7 T animal MRI system, focusing on the impact of safety margin, size, and adjustability of the second-order shim coils on the MRI system's optimization.

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!