AI Article Synopsis

Article Abstract

Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478541PMC
http://dx.doi.org/10.1264/jsme2.ME17042DOI Listing

Publication Analysis

Top Keywords

grazing stress
12
antibiotic resistance
8
resistance gene
8
stress ciliates
8
ciliates heterotrophic
8
heterotrophic nanoflagellates
8
bacterial cells
8
copy number
8
number ex-tetm
8
presence grazers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!