In vivo studies of neurophysiology using the whole cell patch-clamp technique enable exquisite access to both intracellular dynamics and cytosol of cells in the living brain but are underrepresented in deep subcortical nuclei because of fouling of the sensitive electrode tip. We have developed an autonomous method to navigate electrodes around obstacles such as blood vessels after identifying them as a source of contamination during regional pipette localization (RPL) in vivo. In mice, robotic navigation prevented fouling of the electrode tip, increasing RPL success probability 3 mm below the pial surface to 82% ( = 72/88) over traditional, linear localization (25%, = 24/95), and resulted in high-quality thalamic whole cell recordings with average access resistance (32.0 MΩ) and resting membrane potential (-62.9 mV) similar to cortical recordings in isoflurane-anesthetized mice. Whole cell yield improved from 1% ( = 1/95) to 10% ( = 9/88) when robotic navigation was used during RPL. This method opens the door to whole cell studies in deep subcortical nuclei, including multimodal cell typing and studies of long-range circuits. This work represents an automated method for accessing subcortical neural tissue for intracellular electrophysiology in vivo. We have implemented a novel algorithm to detect obstructions during regional pipette localization and move around them while minimizing lateral displacement within brain tissue. This approach leverages computer control of pressure, manipulator position, and impedance measurements to create a closed-loop platform for pipette navigation in vivo. This technique enables whole cell patching studies to be performed throughout the living brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547255 | PMC |
http://dx.doi.org/10.1152/jn.00117.2017 | DOI Listing |
Sci Robot
January 2025
Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong, China.
Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.
View Article and Find Full Text PDFUrol Pract
January 2025
Department of Urology, Mayo Clinic, Rochester, Minnesota.
Introduction: The US supply disruption of surgical irrigation fluids in September 2024 prompted the need for fluid conservation and potential deferral of urology procedures. We characterized fluid use in common endoscopic procedures to articulate recommendations for irrigation fluid stewardship and case prioritization during fluid shortages.
Methods: We reviewed case volumes and irrigation fluid use for endoscopic urological procedures at our institution during January-September 2024.
J Am Chem Soc
January 2025
College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China.
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves.
View Article and Find Full Text PDFSci Data
January 2025
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210000, China.
Travelable area boundaries not only constrain the movement of field robots but also indicate alternative guiding routes for dynamic objects. Publicly available road boundary datasets have outlined boundaries by binary segmentation labels. However, hard post-processes have to be done to extract from detected boundaries further semantics including the shapes of the boundaries and guiding routes, which poses challenges to a real-time visual navigation system without detailed prior maps.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Roth | McFarlane Hand & Upper Limb Center, St Joseph's Health Care London, London, ON, Canada.
Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!