Humans and other large-brained hominins have been proposed to increase energy turnover during their evolutionary history. Such increased energy turnover is plausible, given the evolution of energy-rich diets, but requires empirical confirmation. Framing human energetics in a phylogenetic context, our meta-analysis of 17 wild non-human primate species shows that daily metabolizable energy input follows an allometric relationship with body mass where the allometric exponent for mass is 0.75 ± 0.04, close to that reported for daily energy expenditure measured with doubly labelled water in primates. Human populations at subsistence level ( = 6) largely fall within the variation of primate species in the scaling of energy intake and therefore do not consume significantly more energy than predicted for a non-human primate of equivalent mass. By contrast, humans ingest a conspicuously lower mass of food (-64 ± 6%) compared with primates and maintain their energy intake relatively more constantly across the year. We conclude that our hominin hunter-gatherer ancestors did not increase their energy turnover beyond the allometric relationship characterizing all primate species. The reduction in digestive costs due to consumption of a lower mass of high-quality food, as well as stabilization of energy supply, may have been important evolutionary steps enabling encephalization in the absence of significantly raised energy intakes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474076 | PMC |
http://dx.doi.org/10.1098/rspb.2017.0577 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wrocław, Poland.
Introduction: Acromegaly is a disease characterized by enhanced bone turnover with persistently high vertebral fracture risk. Sclerostin is a glycoprotein, which acts as an inhibitor of bone formation and activates osteoclast-mediated bone resorption. The osteoprotegerin (OPG)/receptor activator for the nuclear factor κ B ligand (RANK-L) system is crucial for controlling bone metabolism.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.
During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, BNL 463, 50 Bell Ave, Upton NY 11973, USA.
In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.
View Article and Find Full Text PDFWater Res
December 2024
Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany. Electronic address:
Aquatic ecosystems house a significant fraction of Earth's biosphere, yet most prokaryotes inhabiting these environments remain uncultivated. While recently developed genome-resolved metagenomics and single-cell genomics techniques have underscored the immense genetic breadth and metabolic potential residing in uncultivated Bacteria and Archaea, cultivation of these microorganisms is required to study their physiology via genetic systems, confirm predicted biochemical pathways, exploit biotechnological potential, and accurately appraise nutrient turnover. Over the past two decades, the limitations of culture-independent investigations highlighted the importance of cultivation in bridging this vast knowledge gap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!