In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become the standard for routine bacterial species identification due to its rapidity and low costs for consumables compared to those of traditional DNA-based methods. However, it has been observed that strains of some bacterial species, such as strains, cannot be reliably identified using mass spectrometry (MS). Raman spectroscopy is a rapid technique, as fast as MALDI-TOF, and has been shown to accurately identify bacterial strains and species. In this study, we compared hierarchical clustering results for MS, genomic, and antimicrobial susceptibility test data to hierarchical clustering results from Raman spectroscopic data for 31 clinical isolates labeled according to their pulsed-field gel electrophoresis data for strain differentiation. In addition to performing hierarchical cluster analysis (HCA), multiple chemometric methods of analysis, including principal-component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), were performed on the MS and Raman spectral data, along with a variety of spectral preprocessing techniques for best discriminative results. Finally, simple HCA algorithms were performed on all of the data sets to explore the relationships between, and natural groupings of, the strains and to compare results for the four data sets. To obtain numerical comparison values of the clustering results, the external cluster evaluation criteria of the Rand index of the HCA dendrograms were calculated. With a Rand index value of 0.88, Raman spectroscopy outperformed the other techniques, including MS (with a Rand index value of 0.58).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527427PMC
http://dx.doi.org/10.1128/JCM.01744-16DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
mass spectrometry
8
bacterial species
8
hierarchical clustering
8
data sets
8
data
6
strains
5
raman
5
accurate rapid
4
rapid differentiation
4

Similar Publications

Two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDC) have received extensive research interests and investigations in the past decade. In this research, we report the first experimental measurement of the in-plane thermal conductivity of MoS monolayer under a large mechanical strain using optothermal Raman technique. This measurement technique is direct without additional processing to the material, and MoS's absorption coefficient is discovered during the measurement process to further increase this technique's precision.

View Article and Find Full Text PDF

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

Investigation of the suitability of confocal Raman spectroscopy for the demonstration of bioequivalence of topical products.

Int J Pharm

January 2025

University of Tuebingen, Pharmaceutical Technology, Auf Der Morgenstelle 8 72076 Tuebingen, Germany. Electronic address:

Bioequivalence studies of topical formulations have attracted increased interest as the European Medicines Agencies "Guideline on quality and equivalence on locally applied, locally acting cutaneous products" describes them in the context of the approval of generics. Since the guideline only proposes tape stripping as a destructive method for bioequivalence testing in in vitro skin penetration, the aim of this study was to investigate the suitability of confocal Raman spectroscopy (CRS) as a non-destructive alternative. To validate the CRS results, tape stripping and CRS experiments using ketoprofen as a model API were performed consecutively on the same samples of ex vivo porcine skin after frozen storage and compared.

View Article and Find Full Text PDF

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!