This research aimed to measure the received photon and thermal neutron doses to contralateral breast (CB) in breast cancer radiotherapy for various field sizes in presence of physical and dynamic wedges. The measurement of photon and thermal neutron doses was carried out on right breast region of RANDO phantom (as CB) for 18 MV photon beams. The dose measurements were performed by thermoluminescent dosimeter chips. These measurements obtained for various field sizes in presence of physical and dynamic wedges. The findings of this study showed that the received doses (both of the photon and thermal neutron) to CB in presence of physical wedge for 11 × 13, 11 × 17 and 11 × 21 cm2 field sizes were 5.92, 6.36 and 6.77% of the prescribed dose, respectively as well as for dynamic wedge were 2.92, 4.63 and 5.60% of the prescribed dose, respectively. The results showed that the received photon and thermal neutron doses to CB increase with increment of field sizes. The received photon and thermal neutron doses to CB in presence of physical wedge were more than dynamic wedge. According to obtained findings, it is suggested that using a dynamic wedge is preferable than physical wedge, especially for medial tangential field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncx076 | DOI Listing |
ChemSusChem
January 2025
Southeast University, School of Chemistry and Chemical Engineering, Dong nan da xue Road No.2, Jiangning District, Nanjing, China., 211189, Nanjing, CHINA.
Concentrated solar-driven CO2 reduction is a breakthrough approach to combat climate crisis. Harnessing the in-situ coupling of high photon flux density and high thermal energy flow initiates multiple energy conversion pathways, such as photothermal, photoelectric, and thermoelectric processes, thereby enhancing the efficient activation of CO2. This review systematically presents the fundamental principles of concentrated solar systems, the design and classification of solar-concentrating devices, and industrial application case studies.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.
The optical modulation of ferroelectric polarization constitutes a transformative, non-contact strategy for the precise manipulation of ferroelectric properties, heralding advancements in optically stimulated ferroelectric devices. Despite its potential, progress in this domain is constrained by material limitations and the intricate nature of the underlying mechanisms. Recent studies have achieved efficient regulation of ferroelectric polarization and thermal conductivity in chiral ferroelectric thin films through the application of left- and right-handed circularly polarized light (LCP and RCP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!