Hundreds of different bacterial species inhabit our intestines and contribute to our health status, with significant loss of species diversity typically observed in disease conditions. Within each microbial species a great deal of diversity is hidden and such intra-specific variation is also key to the proper homeostasis between the host and its microbial inhabitants. Indeed, it is at this level that new mechanisms of antibiotic resistance emerge and pathogenic characteristics evolve. Yet, our knowledge on intra-species variation in the gut is still limited and an understanding of the evolutionary mechanisms acting on it is extremely reduced. Here we review recent work that has begun to reveal that adaptation of commensal bacteria to the mammalian intestine may be fast and highly repeatable, and that the time scales of evolutionary and ecological change can be very similar in these ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2017.05.007 | DOI Listing |
J Phycol
March 2025
International Center for Biotechnology, Osaka University, Osaka, Japan.
The interdependence between microalgae and bacteria has sparked scientific interest over years, primarily driven by the practical applications of microalgal-bacteria consortia in wastewater treatment and algal biofuel production. Although adequate studies have focused on the broad interactions and general behavior between the two entities, there remains a scarcity of study on the metabolic role of symbiotic bacteria in promoting microalgal growth. Here, we use the KEIO Knockout Collection, an Escherichia coli gene knockout mutant library, to systematically screen for genes involved in the interdependence of Chlorella sorokiniana and E.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:
Cold stress is a limiting factor for rice yield. Empirical evidence has demonstrated that arbuscular mycorrhizal fungi (AMF) can bolster the cold resilience of plants. In barren environments, AMF can promote host plant growth and resistance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette 91198, France.
is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.
View Article and Find Full Text PDFMycorrhiza
March 2025
INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France.
Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known.
View Article and Find Full Text PDFJ Med Microbiol
March 2025
Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale,, Pune, Maharashtra, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!