Plastic microbeads are often added to personal care and cosmetic products (PCCPs) as an abrasive agent in exfoliants. These beads have been reported to contaminate the aquatic environment and are sufficiently small to be readily ingested by aquatic organisms. Plastic microbeads can be directly released into the aquatic environment with domestic sewage if no sewage treatment is provided, and they can also escape from wastewater treatment plants (WWTPs) because of incomplete removal. However, the emissions of microbeads from these two sources have never been estimated for China, and no regulation has been imposed on the use of plastic microbeads in PCCPs. Therefore, in this study, we aimed to estimate the annual microbead emissions in Mainland China from both direct emissions and WWTP emissions. Nine facial scrubs were purchased, and the microbeads in the scrubs were extracted and enumerated. The microbead density in those products ranged from 5219 to 50,391 particles/g, with an average of 20,860 particles/g. Direct emissions arising from the use of facial scrubs were estimated using this average density number, population data, facial scrub usage rate, sewage treatment rate, and a few conservative assumptions. WWTP emissions were calculated by multiplying the annual treated sewage volume and estimated microbead density in treated sewage. We estimated that, on average, 209.7 trillion microbeads (306.9 tonnes) are emitted into the aquatic environment in Mainland China every year. More than 80% of the emissions originate from incomplete removal in WWTPs, and the remaining 20% are derived from direct emissions. Although the weight of the emitted microbeads only accounts for approximately 0.03% of the plastic waste input into the ocean from China, the number of microbeads emitted far exceeds the previous estimate of plastic debris (>330 μm) on the world's sea surface. Immediate actions are required to prevent plastic microbeads from entering the aquatic environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.05.053 | DOI Listing |
Undersea Hyperb Med
January 2025
MedStar Georgetown University Hospital; 3800 Reservoir Road NW; Washington, DC 20007; USA.
Introduction: Arterial vascular occlusion is a rare complication of dermal filler injection. This case report describes the successful use of hyperbaric oxygen therapy in a patient with vascular occlusion after a permanent dermal filler was injected.
Case Report: A 51-year-old woman underwent an injection of non-resorbable polymethylmethacrylate microspheres into her nasolabial folds.
Sci Total Environ
January 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.
African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil.
Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!