R-(+)-[3H-N'-CH3]N-methylnicotinium ion has been identified as a urinary metabolite of ip administered R-(+)-[3H-N'-CH3]nicotine in the guinea pig. Under similar conditions, S-(-)-[3H-N'-CH3]nicotine is not converted to the corresponding N-methylated metabolite. R-(+)-N-methylnicotinium salt was isolated from the urine of guinea pigs that had been chronically dosed ip with R-(+)-nicotine. The identification and stereochemical analysis of this metabolite were carried out using analytical and preparative cation exchange high pressure liquid chromatography and chemical reduction followed by GLC-mass spectrometric analysis and 1H NMR spectroscopy. The results show that nicotine is stereospecifically biotransformed into an N-methylated urinary metabolite in the guinea pig.

Download full-text PDF

Source

Publication Analysis

Top Keywords

guinea pig
12
urinary metabolite
8
stereospecific vivo
4
vivo n-methylation
4
n-methylation nicotine
4
guinea
4
nicotine guinea
4
pig r-+-[3h-n'-ch3]n-methylnicotinium
4
r-+-[3h-n'-ch3]n-methylnicotinium ion
4
ion identified
4

Similar Publications

Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.

Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.

View Article and Find Full Text PDF

Capture primed pluripotency in guinea pig.

Stem Cell Reports

December 2024

Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China. Electronic address:

Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Introduction: Most drug-resistant tuberculosis (DR-TB) occurs due to transmission of unsuspected or ineffectively treated DR-TB. The duration of treatment to stop person-to-person spread of DR-TB is uncertain. We evaluated the impact of novel regimens, including BPaL, on DR-TB transmission using the human-to-guinea pig (H-GP) transmission model.

View Article and Find Full Text PDF

Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!