Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1's cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462353 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177919 | PLOS |
Folia Morphol (Warsz)
November 2024
Department of Anatomy, Tokyo Medical University, Tokyo, Japan.
Background: Marsupials have a narrower range of forelimb morphological features than placental mammals. It is hypothesized that this is due to a constraint in the reproductive biology of marsupials. The constraint is that newborn marsupials must crawl into their mother's pouch.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Research Group Bioinformatics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Schleswig-Holstein 24306, Germany.
Evolution
December 2024
School of Biological Sciences, Washington State University, Pullman, WA, United States.
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer.
View Article and Find Full Text PDFTransmissible cancers are unique instances in which cancer cells escape their original host and spread through a population as a clonal lineage, documented in Tasmanian Devils, dogs, and ten bivalve species. For a cancer to repeatedly transmit to new hosts, these lineages must evade strong barriers to transmission, notably the metastasis-like physical transfer to a new host body and rejection by that host's immune system. We quantified gene expression in a transmissible cancer lineage that has spread through the soft-shell clam () population to investigate potential drivers of its success as a transmissible cancer lineage, observing extensive differential expression of genes and gene pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!