Background: Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD).
Methods: In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute.
Results: Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36-57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48-130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12-30)cm/s/min to 41 (95% CI 32-51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2-8.3)cm/s to 7.5 (95% CI 5.9-9.1)cm/s, P = 0.03)].
Conclusion: INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462420 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179001 | PLOS |
Alzheimers Dement
December 2024
Merry Life Biomedical Company, Ltd., Tainan City, Taiwan, Taiwan.
Background: Alzheimer's disease (AD) is complex in pathogenesis and related to aging biology, especially in late-onset AD. We identified a novel synthetic curcumin analog TML-6 through the platform of 6 biomarkers of anti-aging, anti-inflammation, and anti-Aβ as the potential AD drug candidate. TML-6 exhibits multi-target effects on AD pathogenesis, including the activation of NrF-2, the regulation of autophagic machinery through mTOR, the inhibition of APP synthesis and reduction of Aβ, the upregulation of ApoE, and the inhibition of microglial activation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Weill Cornell Medicine, New York City, NY, USA.
Background: Early detection of Alzheimer's disease (AD) can improve prognosis, given new anti-amyloid therapies. Both positron emission tomography (PET) and magnetic resonance (MR) imaging biomarkers are currently used (1). 48F-Fluorodeoxyglucose-PET (FDG-PET) can detect neurodegeneration-related hypometabolism but is costly and not easily accessible (2).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane University, New Orleans, LA, USA.
Background: Vascular dementia (VaD), the second most common cause of dementia, is characterized by cognitive decline due to reduced cerebral blood flow and blood-brain barrier disruption. Current evidence demonstrates that not only are VaD patients at higher risk of severe COVID-19 illness and mortality, but also that pre-existing cognitive dysfunction/dementia is associated with increased COVID-19 incidence. Conversely, SARS-CoV-2 infection alone worsens dementia-related mild cognitive impairment (MCI) and increases risk of cognitive decline, supported by similar fMRI findings demonstrating hypoperfusion.
View Article and Find Full Text PDFActa Cardiol
January 2025
The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China.
Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Introduction: Taohong Siwu decoction (THSWD), a traditional prescription for enhancing blood circulation and eliminating blood stasis, primarily comprises peach kernel, safflower, angelica, chuanxiong, and rehmannia. Modified Taohong Siwu decoction (MTHSWD), an advanced version of THSWD, incorporates additional ingredients such as epimedium, cinnamon, and salvia miltiorrhiza. This addition serves to augment its efficacy in warming yang and promoting blood circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!