This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aa77eaDOI Listing

Publication Analysis

Top Keywords

320 detector-row
12
detector-row cone-beam
12
cone-beam scanner
12
dose reporting
8
based monte
8
monte carlo
8
carlo simulation
8
patients undergoing
8
examinations 320
8
organ doses
8

Similar Publications

Objective: The purpose of this study was to compare radiation dose reduction capability for accurate liver tumor measurements of a computer-aided volumetry (CAD v ) software for filtered back projection (FBP), hybrid-type iterative reconstruction (IR), mode-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR) at a phantom study.

Methods: A commercially available anthropomorphic abdominal phantom was scanned five times with a 320-detector row CT at 600 mA, 400 mA, 200 mA, and 100 mA and reconstructed by four methods. Signal-to-noise ratios (SNRs) of all lesions within the arterial and portal-venous phase inserts were calculated, and SNR of the lesion phantom was compared with that of all reconstruction methods by means of Tukey's honestly significant difference (HSD) test.

View Article and Find Full Text PDF

Background: Dynamic Computed Tomography Angiography (4D CTA) has the potential of providing insight into the biomechanical properties of the vessel wall, by capturing motion of the vessel wall. For vascular pathologies, like intracranial aneurysms, this could potentially refine diagnosis, prognosis, and treatment decision-making.

Purpose: The objective of this research is to determine the feasibility of a 4D CTA scanner for accurately measuring harmonic diameter changes in an in-vitro simulated vessel.

View Article and Find Full Text PDF

Background:  Fasciocutaneous free deltoid flaps are used to reconstruct hand, foot, and maxillofacial defects. Although anatomical studies of this flap pedicle have been performed on cadavers, there are no reports on the use of 320-detector row computed tomography angiography (CTA-320) to investigate the deltoid flap pedicle in living humans. This study aimed to investigate the arterial characteristics of the deltoid flap pedicle using the CTA-320 system in living humans.

View Article and Find Full Text PDF

To assess the diagnostic performance of unenhanced electrocardiogram (ECG)-gated cardiac computed tomography (CT) for detecting myocardial edema, using MRI T2 mapping as the reference standard. This retrospective study protocol was approved by our institutional review board, which waived the requirement for written informed consent. Between December 2017 to February 2019, consecutive patients who had undergone T2 mapping for myocardial tissue characterization were identified.

View Article and Find Full Text PDF

A 73-year-old male was admitted because of recurrent syncope. He was diagnosed with transient bradycardia caused by a 2:1 atrioventricular block, and he underwent cardiac computed tomography (CT) using 320 detector-row CT to screen for coronary artery disease. Significant coronary artery stenosis was not detected, but diffuse late iodinate enhancement was found on the epi-myocardium and endo-myocardium of the interventricular septum, and endo-myocardium of the anterior and lateral left ventricular (LV) myocardium (LVM) on CT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!