We report molecular dynamics in the rigid amorphous fraction (RAF) of the polymer bound at the interfaces with nanoparticles in polymer nanocomposites and calculate the glass transition temperature, T, for this bound layer of polymer. We follow the '3-phase-model' for semicrystalline polymers where the polymer matrix consists of the crystalline fraction (CF), the mobile amorphous fraction (MAF) and the RAF. While the amorphous polymer bound by crystallites is completely rigid, neither contributing to the glass transition, nor displaying molecular dynamics, the amorphous polymer bound at the interfaces with filler displays decelerated dynamics, as compared to the bulk polymer. Reports in the literature suggest a discrepancy between T values obtained by Differential Scanning Calorimetry (DSC) and by Dielectric Relaxation Spectroscopy (DRS). As a plausible explanation we suggest that DRS results in T values taking into account the bound polymer, whereas DSC does not. For this investigation we use semicrystalline polyurethane-urea/SiO nanocomposites and employ, next to DSC and DRS, SEM, SAXS and WAXS for morphological characterization. It is our intention to use DRS as a tool for investigating the RAF.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00397hDOI Listing

Publication Analysis

Top Keywords

glass transition
12
amorphous fraction
12
polymer bound
12
rigid amorphous
8
polyurethane-urea/sio nanocomposites
8
molecular dynamics
8
polymer
8
bound interfaces
8
amorphous polymer
8
amorphous
5

Similar Publications

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity.

View Article and Find Full Text PDF

The development of materials from renewable resources has been increasing, intending to reduce the consumption of fossil sources, with terpenes being one of the main families that reduce the consumption of isoprene. The study of the binary catalytic system neodymium versatate/dibutyl magnesium (NdV/Mg(-Bu)), for the coordination homopolymerization of β-myrcene and β-farnesene, was carried out analysing different [Nd] : [Mg] ratios (between 4 and 10). Reporting conversions of 92% and 83% at an [Nd] : [Mg] ratio of 8 for polymyrcene (PMy) and polyfarnesene (PFa), respectively, and microstructures comprising 1,4 content above 80% for both polymers (PMy, -59% and PFa, -83%).

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Aim: Within the in vitro fertilization (IVF) process, to evaluate the possibility of using the state of the meiotic spindle of oocytes as an indicator of maturity in order to optimize the timing of vitrification.

Patients And Methods: In the presented report, the cause of couple infertility was a combination of a 38-year-old female and 43-year-old male with azoospermia, which was an indication for oocyte vitrification. Oocyte polar bodies and optically birefringent meiotic spindles were visualized by polarized light microscopy and their states and relative positions were used as indicators of oocyte maturation, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!