We herein present oxygen-deficient molybdenum oxide quantum dots (MoO QDs), which possess matching-absorption-spectrum to solar light in both visible and near infrared regions, for proof-of-concept of interfacial water evaporation. Theoretical modeling suggests that the unique optical property of MoO QDs results from oxygen defect level, instead of localized surface plasmon resonance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc01427a | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFChemphyschem
January 2025
Western University, Chemistry, 1151 Richmond St, N6A5B7, London, CANADA.
Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.
View Article and Find Full Text PDFNanoscale
January 2025
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
Lowering the population inversion threshold is key to leveraging quantum dots (QDs) for nanoscale lasing and laser miniaturization. However, optical realization of population inversion in QDs has an inherent limitation: the number of excited electrons per QD is bound by the absorbed photons. Here we show that one can break this population limit and realize near-zero threshold inversion plasmonic doping.
View Article and Find Full Text PDFChemistry
January 2025
National & Kapodistrian University of Athens, Chemistry, Panepistimiopolis, Zografou, 15771, Athens, GREECE.
The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.
View Article and Find Full Text PDFNano Lett
January 2025
School of Physics, Xidian University, No. 2 Taibai South Road, Xi'an 710071, China.
Fluorescent nanodots derived from hexagonal boron nitride (-BN) have garnered significant attention over the past decade. As a result, various synthesis methods─encompassing both bottom-up hydrothermal reactions and top-down exfoliation processes─have been deemed "successful" in producing BN nanodots. Nevertheless, this Perspective emphasizes that substantial challenges remain in the synthesis of "true" nanodots composed mainly of -BN units, as many so-called successful syntheses reported in the literature involve some mischaracterizations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!