For successful skeletal muscle tissue regeneration, inducing alignment and fusion of myoblasts into multinucleated myotubes is critical. Many studies are ongoing to induce myoblast alignment using various micro/nanopatternings on scaffold surfaces, mechanically stretching scaffolds, or aligned micro/nanofibers. In this study, we have developed a simple method to induce myoblast alignment using a modified plasma treatment on a hybrid PCL scaffold consisting of melt-printed perpendicular PCL struts and an electrospun PCL fibrous mat. For the hybrid scaffold, the surface of the electrospun mat was selectively roughened with a plasma process supplemented with a template. The cell alignment of myoblasts using this system was enhanced significantly when compared to results from the use of a hybrid scaffold with a non-roughened electrospun fiber surface or a hybrid scaffold where the whole surface of the electrospun fibers was roughened. This new type of plasma-treated hybrid scaffold has strong potential as a biomaterial for use in muscle tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/aa77ba | DOI Listing |
Mater Today Bio
February 2025
Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China.
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.
View Article and Find Full Text PDFEndocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia. Electronic address:
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA.
Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
Despite ongoing advancements in drug design and developments, breast cancer remains a serious and devastating disease and is ranked as the second most common illness in women. Breast cancer rates have increased significantly during the last 40 years. This necessitates the development of novel treatment techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!