Alterations in shear stress, mechanical deformation, extracellular matrix (ECM) composition and exposure to inflammatory conditions are known to cause endothelial to mesenchymal transformation (EndMT). This change in endothelial phenotype has only recently been linked to adult pathologies such as cancer progression, organ fibrosis, and calcific aortic valve disease; and its function in adult physiology, especially in response to tissue mechanics, has not been rigorously investigated. EndMT is a response to mechanical and biochemical signals that results in the remodeling of underlying tissues. In diseased aortic valves, glycosaminoglycans (GAGs) are present in the collagen-rich valve fibrosa, and are deposited near calcified nodules. In this study, in vitro models of early and late-stage valve disease were developed by incorporating the GAGs chondroitin sulfate (CS), hyaluronic acid, and dermatan sulfate into 3D collagen hydrogels with or without exposure to TGF-β1 to simulate EndMT in response to microenvironmental changes. High levels of CS induced the highest rate of EndMT and led to the most collagen I and GAG production by mesenchymally transformed cells, which indicates a cell phenotype most likely to promote fibrotic disease. Mesenchymal transformation due to altered ECM was found to depend on cell-ECM bond strength and extracellular signal-regulated protein kinases 1/2 signaling. Determining the environmental conditions that induce and promote EndMT, and the subsequent behavior of mesenchymally transformed cells, will advance understanding on the role of endothelial cells in tissue regeneration or disease progression. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2729-2741, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36133DOI Listing

Publication Analysis

Top Keywords

mesenchymal transformation
12
endothelial mesenchymal
8
extracellular matrix
8
aortic valve
8
endothelial cells
8
valve disease
8
endmt response
8
mesenchymally transformed
8
transformed cells
8
endothelial
5

Similar Publications

Targeting oncogene-induced cellular plasticity for tumor therapy.

Adv Biotechnol (Singap)

July 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Background: A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis.

View Article and Find Full Text PDF

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!