Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.13754 | DOI Listing |
J Environ Manage
January 2025
CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:
Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, University of Oregon, Eugene, OR 97403.
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.
Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.
The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!