Acute lung injury is associated with formation of pulmonary edema leading to impaired gas exchange. Patients with acute respiratory distress syndrome (ARDS) require mechanical ventilation to improve oxygenation; however, the use of relatively low tidal volumes (to minimize further injury of the lung) often leads to further accumulation of carbon dioxide (hypercapnia). Hypercapnia has been shown to impair alveolar fluid clearance (AFC), thereby causing retention of pulmonary edema, and may lead to worse outcomes; however, the underlying molecular mechanisms remain incompletely understood. AFC is critically dependent on the epithelial sodium channel (ENaC), which drives the vectorial transport of Na across the alveolar epithelium. Thus, in the current study, we investigated the mechanisms by which hypercapnia effects ENaC cell surface stability in alveolar epithelial cells (AECs). Elevated CO levels led to polyubiquitination of β-ENaC and subsequent endocytosis of the α/β-ENaC complex in AECs, which were prevented by silencing the E3 ubiquitin ligase, Nedd4-2. Hypercapnia-induced ubiquitination and cell surface retrieval of ENaC were critically dependent on phosphorylation of the Thr615 residue of β-ENaC, which was mediated by the extracellular signal-regulated kinase (ERK)1/2. Furthermore, activation of ERK1/2 led to subsequent activation of AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK)1/2 that in turn phosphorylated Nedd4-2 at the Thr899 residue. Importantly, mutation of Thr899 to Ala markedly inhibited the CO-induced polyubiquitination of β-ENaC and restored cell surface stability of the ENaC complex, highlighting the critical role of Nedd4-2 phosphorylation status in targeting ENaC. Collectively, our data suggest that elevated CO levels promote activation of the ERK/AMPK/JNK axis in a human AEC line, in which ERK1/2 phosphorylates β-ENaC whereas JNK mediates phosphorylation of Nedd4-2, thereby facilitating the channel-ligase interaction. The hypercapnia-induced ENaC dysfunction may contribute to impaired alveolar edema clearance and thus, interfering with these molecular mechanisms may improve alveolar fluid balance and lead to better outcomes in patients with ARDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440515PMC
http://dx.doi.org/10.3389/fimmu.2017.00591DOI Listing

Publication Analysis

Top Keywords

cell surface
16
surface stability
12
enac cell
8
alveolar epithelial
8
pulmonary edema
8
alveolar fluid
8
molecular mechanisms
8
critically dependent
8
elevated levels
8
polyubiquitination β-enac
8

Similar Publications

Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.

View Article and Find Full Text PDF

Trogocytosis-mediated immune evasion in the tumor microenvironment.

Exp Mol Med

January 2025

Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.

Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are increasingly used in clinic for multiple indications and may improve upon the activity of parental antibodies by delivering cytotoxic payloads into target cells. This activity is predicated upon internalization to release the cytotoxic payloads intracellularly. Since binding of ADCs to their cell surface targets does not guarantee their internalization, we hypothesize that proteolysis targeting chimeras (PROTACs) could improve the activity of ADCs through forced internalization.

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility.

Sci Rep

December 2024

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!