Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago.

Sci Rep

Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.

Published: June 2017

The Yellow River (or Huanghe and also known as China's Sorrow in ancient times), with the highest sediment load in the world, provides a key link between continental erosion and sediment accumulation in the western Pacific Ocean. However, the exact age of its influence on the marginal sea is highly controversial and uncertain. Here we present high-resolution records of clay minerals and lanthanum to samarium (La/Sm) ratio spanning the past ~1 million years (Myr) from the Bohai and Yellow Seas, the potential sedimentary sinks of the Yellow River. Our results show a climate-driven provenance shift from small, proximal mountain rivers-dominance to the Yellow River-dominance at ~880 ka, a time period consistent with the Mid-Pleistocene orbital shift from 41-kyr to 100-kyr cyclicity. We compare the age of this provenance shift with the available age data for Yellow River headwater integration into the marginal seas and suggest that the persistent influence of the Yellow River on the Chinese marginal seas must have occurred at least ~880 ka ago. To our knowledge, this study provides the first offshore evidence on the drainage history of the Yellow River within an accurate chronology framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460111PMC
http://dx.doi.org/10.1038/s41598-017-03140-xDOI Listing

Publication Analysis

Top Keywords

yellow river
24
marginal seas
12
yellow
8
river chinese
8
chinese marginal
8
~880 ka ago
8
provenance shift
8
river
6
persistent effects
4
effects yellow
4

Similar Publications

Optimization Control Method for Low-Voltage DC Microgrid with Low Carbon, Economy, and Reliability.

ACS Omega

December 2024

Guoneng Zhishen Control Technology Co., Ltd, Beijing 102211, China.

From the perspectives of economy, low carbon, and safety in DC microgrids, a multiscenario optimization control method of low-voltage DC microgrids based on the nondominant sorting arctic puffin optimization algorithm (NSAPOA) is proposed in this paper. The Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is used to generate typical output scenarios of photovoltaic and loads that are reduced by the K-means clustering method to deal with the uncertainty of photovoltaic and load. Based on the time of use electricity price, the operating modes of the low-voltage DC microgrid system are divided to formulate relevant energy exchange strategies.

View Article and Find Full Text PDF

Water diversions can mitigate water scarcities by strategically reallocating water resources. Despite their benefits, these interventions may profoundly affect biodiversity and multiple ecological functions ("multifunctionality") within highly managed lake systems. However, the specific impact of such interventions on the relationship between biodiversity and multifunctionality remains elusive, which limits our grasp of how water regulation shapes the dynamics of managed lake ecosystems.

View Article and Find Full Text PDF

The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.

View Article and Find Full Text PDF

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Climate change, driven by carbon emissions, has emerged as a pressing global ecological and environmental challenge. Here, we leverage the panel data of five provinces and above prefecture-level cities in the middle and lower reaches of the Yellow River Basin to estimate the agricultural carbon emissions (CEs), carbon sinks (CSs), carbon compensation rate (CCR), and carbon compensation potential (CCP) from 2001 to 2022 and investigate the spatiotemporal evolution characteristics for this region. We propose an improved GLM-stacking ensemble learning method for CE prediction with limited sample data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!