Non-uniform salinity alleviates salt damage through sets of physiological adjustments in Na transport in leaf and water and nutrient uptake in the non-saline root side. However, little is known of how non-uniform salinity induces these adjustments. In this study, RNA sequencing (RNA-Seq) analysis shown that the expression of sodium transport and photosynthesis related genes in the non-uniform treatment were higher than that in the uniform treatment, which may be the reason for the increased photosynthetic (Pn) rate and decreased Na content in leaves of the non-uniform salinity treatment. Most of the water and nutrient transport related genes were up-regulated in the non-saline root side but down-regulated in roots of the high-saline side, which might be the key reason for the increased water and nutrient uptake in the non-saline root side. Furthermore, the expression pattern of most differentially expressed transcription factor and hormone related genes in the non-saline root side was similar to that in the high-saline side. The alleviated salt damage by non-uniform salinity was probably attributed to the increased expression of salt tolerance related genes in the leaf and that of water and nutrient uptake genes in the non-saline root side.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460137 | PMC |
http://dx.doi.org/10.1038/s41598-017-03302-x | DOI Listing |
Biosensors (Basel)
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.
View Article and Find Full Text PDFMar Pollut Bull
September 2024
Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China. Electronic address:
Soil salinity in the root rhizosphere is highly heterogeneous in natural environments. Suaeda salsa L. is a highly salt-adapted halophyte, but it is unclear how S.
View Article and Find Full Text PDFHuan Jing Ke Xue
June 2024
Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
In order to evaluate the effect of aging and particle size on the adsorption of heavy metals by microplastics, the adsorption behavior of Cu(Ⅱ) by three different particle sizes of polystyrene (PS; 1, 50, and 100 μm) under UV irradiation was systematically studied. The results demonstrated that UV aging significantly changed the surface morphology and physicochemical properties of PS, and 1 μm PS had the strongest aging degree. The adsorption kinetics of PS on Cu(Ⅱ) conformed to the pseudo-second-order kinetic model, and the Freundlich model was more suitable for the experimental data of isothermal adsorption of Cu(Ⅱ) by PS.
View Article and Find Full Text PDFFront Plant Sci
April 2024
Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.
Introduction: Drip irrigation under mulch film promotes a non-uniform salinity distribution in salt fields. The effect of different N application methods on the growth and yield of cotton under drip irrigation under mulch film conditions in eastern coastal saline-alkaline soils in China remain remained unclear.
Methods: A randomized complete block design was used in the experiment.
Sci Rep
March 2024
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
The initial wettability state of the candidate oil reservoirs for low-salinity waterflooding (LSWF) is commonly characterized as mixed-wet. In mixed-wet systems, both the two-phase flow dynamics and the salt transport are significantly influenced by the corner flow of the wetting phase. Thus this study aims at comprehensive evaluation of LSWF efficiency by capturing the effect of corner flow and non-uniform wettability distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!