Conversion into the amorphous form enhances the dissolution of poorly soluble drugs, however the barrier to market for medicines containing an amorphous drug is poor stability. The aim was to produce the amorphous form of a drug within a capsule, without thermal or mechanical stress during manufacture. To facilitate this aim, the mechanism for drug-polymer interaction was explored. Nifedipine and polyvinylpyrrolidone were dissolved in tert-butanol at different drug/polymer ratios. These solutions were dispensed into gelatin capsules and freeze-dried. Differential scanning calorimetry (DSC) & novel FT-IR analysis based on peak symmetry measurements confirmed the absence of crystallinity when polyvinylpyrrolidone exceeded 50%w/w. Capsules containing 10 mg of nifedipine were amorphous and stable for over 3 months at ≈40 °C. Evidence of hydrogen bonding between the N-H group of nifedipine and the C=O group of PVP was observed and this interaction inhibited nifedipine crystallisation. PVP's high affinity for water and the nifedipine-polymer interaction lead to a significant dissolution rate enhancement. The freeze-dried capsule, 10%w/w nifedipine/PVP, had the highest dissolution rate constant of 0.37 ± 0.05 min, and the lowest time to achieve 50% dissolution or t of 1.88 ± 0.05 min. This formulation reached 80% dissolved in less than 6 min whereas the equivalent marketed liquid filled nifedipine capsule took 3 times longer to reach 80% dissolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460206PMC
http://dx.doi.org/10.1038/s41598-017-02676-2DOI Listing

Publication Analysis

Top Keywords

amorphous form
8
dissolution rate
8
dissolution
6
amorphous
5
nifedipine
5
in-situ freeze-drying
4
freeze-drying forming
4
forming amorphous
4
amorphous solids
4
solids directly
4

Similar Publications

Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.

View Article and Find Full Text PDF

We report an 18-year-old male who presented with a two-month history of a lesion over his right forearm with a one-week history of sudden increase in size associated with pain. General and systemic examinations were normal. Dermatological examination revealed a single tender, well-defined, pearly white to erythematous, dome-shaped nodule of approximately 6mm x 5mm x 5mm with central umbilication and surrounding erythema.

View Article and Find Full Text PDF

Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases.

View Article and Find Full Text PDF

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!